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Abstract

In this paper we study a class of operators which act on spaces of sequences taking value on a
module over a Noetherian factorial domain. These operators are obtained as linear combinations
of the operators that shift the sequences forward and backward. For this reason they are called
shift operators. The properties of this class of operators are effectively applied to study difference
equations and dynamical systems over rings. ©) 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: 15A33, 15A54, 39A10, 58F03, 93B25

1. Introduction and notation
1.1. Difference equations over rings

Let R be a ring and let 7,,...,7, € R with m < n € Z. Consider the difference
equation

Fmx(t4+m) + tmpx(t+m+ 1)+ +rx(t+n)=0. (D

Does there exist a non-zero solution of (1)? In other words, does there exist a non-zero
sequence x = {x(¢)}scz € RZ such that (1) is satisfied for all 1 € Z? More generally,
consider the non-homogeneous problem: given a sequence y = {y(¢)}rcz € RZ, does
there exist a sequence x = {x(¢)};cz € RZ such that

FnX(t 4 1) 4+ P X(E+m 4 1)+ - 1x(2 4 1) = Y(1) @)
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for all ¢+ € Z? We are interested in characterizing the set of all the solutions of (1) and
(2) and also to establish concrete algorithms to construct such solutions. f R =k is a
field, things are quite simple: excluding the trivial case in which all the »;’s are equal
to 0, we can as well assume that 7, and r, are non-zero. Then, for every y € kZ, the
set of all the solutions of (2) form an affine k-subspace ¥, CkZ of dimension n — m.
The freedom in the solution corresponds to the fact that we can arbitrarily assign the
value of x in n — m consecutive time instants and then solve uniquely in a recursive
fashion backward and forward in time using (2). Notice that, as a consequence, there
exists a non-zero solution of (1) if and only if n — m > 0. A remarkable fact is that
S, depends on y in a finite way, namely

yi,y2 € kz V1|[a,p] = V2|[ab] = yyll[a+m,b+n] = yy;l[a+m,b+n]a (3)

where we have used the symbol | to denote the restriction of sequences to a certain
index subset. Similar considerations can clearly be repeated for general integral domains
R in the case the leading coefficients r,, and r, are units. There is another useful way
to represent solutions of (2) (in the case r, and r, are units) which we now quickly
recall for later use. Introduce an auxiliary variable

x(1)
x(t+1)
&e)= : , @)
x(t+L-1)
where L = n — m. Define now
0 1 0 0 0
0 0 1 0 0
4= (5)
0 0 0 0 1
_r,,_lrm _rn_lrm+1 _rn_lrm+2 _rn_lrn—Z —r,,_lrn—l
0
0
b= | . C:=(1 0 --- 0) 6)
\1
The solutions of (2) are then given by
S(t+1) = AL(t) + by(t — m),
)
x(t) = C&(t)
as £(0) = &, varies in RE. From (7) we get the closed expression
-1
x(t)=Cld'é + > A" Trbyk—m)], teZ (8)

k=0
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The difficulty starts when at least one of the leading coefficients r,,,r, is no longer
a unit. A lot of pathologies can then happen even for relatively simple rings. As an
example, in the case R = R[z], consider the equations

x(t) —z(t +1)=0, 9)
x(t) +x(t + 1)+ 2x(t + 2) = 0, (10)
x(1) 4+ (z — Dx(t + 1) — zx(t +2) = 0. (11)

It is easy to check that (9) has only the O solution and the same is true for (10) (see
Section 2). On the other hand, (11) admits non-trivial solutions: x(¢) = p constant
where p € R[z]. The non-homogeneous problems associated with the above difference
equations are not easy to solve and only partial results can be obtained. These examples
will be taken up in Section 2: in particular, we will show that they do not satisfy finite
property (3).

Eqgs. (1) and (2) can be expressed in a more compact form. Denote by o the back-
ward shift on RZ defined by (ox)(t) := x(¢ + 1). Consider the Laurent polynomial
p= E;:mrjuf . It induces an R-homomorphism called a scalar shift operator

p(o,671): RZ — RY, (12)
p(o,0 = ri(a’x). (13)
Jj=m

Eq. (2) can be written as
plo,0 Nx=y. (14)

In order to solve previous problems one is then naturally led to study the kernel and
the image of scalar shift operators.

A straightforward generalization of this problem can be obtained in the following
way. First let us set some more notation. If ¥ is an R-module, denote by ¥ [u,u~!]
the R[u,u']-module of Laurent polynomials with coefficients in V. Let V, W be R-
modules and consider the corresponding sequence spaces ¥Z and WZ on which the
shift ¢ (by abuse of notation we always denote it with the same symbol) acts as on
RZ. Let now M = > - mMu/ € Homg(V, W)[u,u~"]. It induces an R-homomorphism

M(e,67): VT > w?, (15)
M(o,07 =Y M;(a’v). (16)
Jj=m

M(o,07!) is said to be a shift operator. We can study the equation
M(o,67 o =w, (17)

where w € WZ. In the case ¥ = R? and W = R/, this clearly corresponds to study
solution of a system of / difference equations in g distinct sequence variables.
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There are several reasons for studying difference equations over rings. We first recall
that it follows from the work of Willems [12, 13] that the theory of linear control
systems in discrete time is ultimately the study of kernels and images of shift operators
over real or complex vector spaces. On the other hand, in the last decades there has
been a growing interest in trying to extend the linear control theory to more general
algebraic structures like rings and modules [3, 11]: this, in Willems’ framework, leads
exactly to the objects of our investigations: shift operators over modules [14]. An
especially important case is when the ring is an algebra of functions, since in this
case difference equations over such rings can be interpreted as a family of linear
difference equations parametrized by certain parameters living on a topological space, a
manifold, an algebraic variety. In this case, it is reasonable to ask if they admit solutions
which are also parametrized with the same regularity that the coeflicients had. Rings of
functions considered in this paper will mainly be the ring of polynomials &[z,...,z,]
and the ring of convergent power series k{zi,...,2,}. Another motivation is related
to the symbolic dynamics over infinite alphabets. As it will appear more clearly in
next subsection, kerels and images of shift operators can be interpreted as dynamical
systems with a module structure which have a lot of interesting dynamical properties.
In this regard the case of the integers Z is probably the most interesting: see [5].

1.2. A dynamical systems point of view

Let ¥ be a finitely generated R-module equipped with the discrete topology and
consider the sequence R-module ¥Z equipped with the product topology. The dynamical
system (VZ,0) is called the full R-shift over the alphabet V. More generally, let
B C V% be a (closed) o-invariant R-submodule. Then, the dynamical system (%#,0,8)
is called a (closed) R-shift over V. For the sake of simplicity, whenever this does not
cause confusion, the restriction sign in ¢ will be dropped. Also, we will refer to #
itself as the R-shift (%, o).

Consider two R-shifts %, and #,. A map Y : B, — %, is called an R-morphism if
Y is a continuous R-homomorphism and yog = g oy. Shift operators are R-morphisms
between full R-shifts and it can easily be shown that these are all the possible ones. It
thus follows that kernels of shift operators are closed R-shifts. On the other hand, as
we will see later on, an image of a shift operator may not be closed. It is, however,
an R-shift.

Kernels and images have a sort of duality property: given a kernel R-shift 4, it is
difficult to construct elements belonging to it, in particular it is difficult to check if
A # {0}. On the other hand, it is easy to check if a given sequence v is in #. The
converse is true for image R-shifts: it is difficult to establish if a given sequence is in
2 but it is easy to construct elements. For this reason, when one is confronted with
the difference equations

M(o,67 Y =0, (18)
M@, e w=w (19)
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may naturally pose the following problems:

(1) Parametrize the set of solutions of (18).

(2) Check the solvability of (19).

(3) Parametrize the set of solutions of (19).

The answers to the previous questions are connected with two important concepts of
systems theory and symbolic dynamics: controllability and finite memory. Let £ C V'Z
be an R-shift. # is said to be controllable [12] if for all vy, v, € A, there exists n € N
and v € # with

v(t) =vi(t) YVt <0, (c"v)(t)=w1(¢) Vt>0. (20)

On the other hand, if / C Z, denote by #); the R-module of restrictions of the bi-infinite
sequences in & to I. & is said to have memory n € N if

veV? and Oig4n] € Bipsm VL E L= v E AB. (21)

4 is said to have finite memory (or to be of finite type), if it has memory n for some
n € N. In the field case it happens that every closed R-shift has finite memory. This
is not true in general, not even for principal ideal domains (PID’s) [4]. It can easily
be shown that if # is controllable, then it is topologically transitive as a dynamical
system. The converse is also true under the assumption that & has finite memory.

Consider the first problem. As mentioned above an efficient way to parametrize the
set of solutions Ker M(a,a~!) would be to express it as the image of a suitable shift
operator. It has been shown in [14] that a closed R-shift can be expressed as the image
of a shift operator if and only if it is controllable. It is clear that a kemel is closed
but not necessarily controllable. For instance, in the scalar case discussed above we
have that a kemel is never controllable, unless it is {0} or RZ. Therefore, in order
to understand when the solution set of a homogeneous difference equation admits an
image representation, we have to characterize the class of kernel R-shifts which are
controllable. Also when the set of solutions % := Ker M (os,6!) is not controllable,
there exists the largest controllable closed R-shift inside 4, that is denoted as %, and
that can be described as the image of a suitable shift operator. We will see in the
sequel that in general 4 can be written as sum

B=RB.+ B,

where 4 is a finitely generated free R-shift. Therefore %, can be represented as the
image of a suitable shift operator, while the elements of 98 can be fruitfully described
through a generalized initial conditions fashion. The only drawback of this parametriza-
tion is that it is not injective in general since the previous sum can not always be found
directly, unless R is a field.

Consider now the second problem. This consists in finding an efficient way to decide
whether for a certain w there exists a solution or not, or, equivalently, in finding an
efficient method for checking if w € ImM(o,0~"). As mentioned above, expressing
ImM(o,6~") as the kemel of a suitable shift operator would provide this method.
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However there are cases in which this is not possible and these occur just when
ImM(s,067!) does not have finite memory. Actually, it is clear that kernels have
necessarily finite memory. Also the converse is true: if 4 C ¥Z has memory N, consider
the R-projection

FiVV S VN B0 = W (22)
It induces a shift operator

y: vt - w? (23)
by

W o)(#):= f()p+m1) (24)

and 4 = Kery. It may well happen that /¥ is not free even if V' was. See [6] for
further discussion on this point.

In the case R is a field, every closed R-shift has finite memory and moreover the
image of a shift operator is always closed. Consequently in this case the situation is
simple. When R is a ring (different from the fieid case) images of shift operators are
not necessarily closed, in particular they may not be kernels. In these cases it turns
out to be very difficult to exploit the structure of these images and we do not know
any systematic way to do it. In Section 2 we discuss some techniques for the scalar
case (see Examples 1-4). In principle it could even happen that an image is closed
but does not have finite memory. We do not have any example of this sort but there
is a positive result: if R is a PID, then, if an image is closed, it has finite memory [5].
If an image has finite memory then, by previous considerations it is also a kernel.

Finally, since Eq. (19) is linear, the third problem reduces to solving problem 1 and
to finding a particular solution of (19).

1.3. Outline of the contents and extensions

All rings considered in this paper will be commutative Noetherian with identity
element. In Section 2 we make a fundamental study of scalar shift operators in the
case when R is a commutative Noetherian factorial domain (or unique factorization
domain UFD). We establish a correspondence between set- and topological-theoretic
properties of such maps and algebraic properties of inducing polynomials. We then pass
to show how these results can be fruitfully applied to study scalar difference equations:
we have a complete result for the homogeneous case and partial results for the non-
homogeneous case. In Section 3 we pass to the matrix case for principal ideal domains
(PID’s). We first make a fundamental study of shift operators and we then pass to
consider systems of difference equations: we establish quite complete results for the
homogeneous problem and partial ones for the non-homogeneous one. Finally certain
extensions to Noetherian factorial domains which are not PID are also considered.

The assumption that R is a Noetherian factorial domain seems to be crucial in order
to obtain a systematic theory as the one developed in this paper for the scalar shift
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operators. On the other hand, a systematic extension to the matrix case is unlikely to be
possible without the assumption that R is a PID. However in many specific situations it
may be possible to have remarkable extensions. The work [6] contains many elements
which actually go in this direction: there, the properties of the shift operators are more
intimately related to dynamical properties of R-shifts than in this paper.

2. Scalar shift operators
2.1. First results

In this section, R always denotes a commutative Noetherian factorial domain (UFD).
Denote by R* and Ry the sets of invertible elements and of non-zero elements in R,
respectively. A multiplicatively closed subset SCR (0 ¢ S, 1 € S) is said to be
saturated if for all a,b € R we have that ab€ S < a,b € S. Let S CR be a saturated
multiplicatively closed set. Define

S:={acR|(b¢R* bdividesa) = b ¢ S}. (25)

It is easy to see that S is also a saturated multiplicatively closed set in R.

Consider Rlu,u™']. p = >.._ ri € Rlu,u™"], with rm,r, € R, is said to be bi-
monic. Denote by S, the saturated multiplicatively closed subset of all the bimonic
polynomials in R[u,u']. S, and S, will play an important role in the sequel. Other
relevant multiplicatively closed subsets in R[u,u~'] are Ry and (R[u,u"'])*. Ry con-
sists of the so called primitive ;)Blynomials. Notice that Ry is not saturated, while its
saturation is Ro - (R[w,u~'])* = Ry.

The following was proved in [5]. For completeness we sketch the proof.

Proposition 1. Consider p € Rlu, u™'). Then, p(o,67") is injective if and only if
pre Sp.

Proof. Suppose that p ¢ Sy. Then, there exists a non-unit bimonic polynomial ¢ such
that g|p. It is clear that

Ker p(c,67 ') DKerg(o,67 ') # 0. (26)

Suppose, conversely, that p € Eb. Since p # 0 it is easy to see that the R-shift
B = Ker p(g,067") is finitely generated over R. Choose x1,...,X, R-generators of #
and let 4 € R**" be such that

o [x1xn] =[x x4 ]4. (27)

Let g be the characteristic polynomial of the matrix A. Since A is invertible, g € S}
and it can easily be shown that Ker g(g,67')D 4. It is clear that g and p must be
coprime polynomials and so there exist 2,k € R[u,u~'] such that @ = hp + kg € Ry.
Since a% = 0 we now have that #=0. O



62 F. Fagnani, S. Zampieri/ Journal of Pure and Applied Algebra 122 (1997) 55-86

Define now X to be the saturated multiplicatively closed set of Laurent polynomials
which induce surjective scalar shift operators. It is easy to see that S, C X. As we will
see equality does not hold in general. We have the following:

Proposition 2. Let p € Rlu,u™'1. Then, p(a,6™") is an open surjection if and only
if p€Sp

Proof. Assume that p € S; and write p = Zfzhr,-u" with 74,7y € R*. Let y, € RZ such
that y,_,, » = 0. Clearly, for every n € N there exists x, € RZ such that Xn|[—n+hntk] =
0 and p(6,0~ ' )x, = y,. This proves that p(s,67!) is an open surjection.

Suppose, conversely, that p(c,67!) is an open surjection and write p = p; p,, with
p1 € S, and P2 € Sp. pi(0,67") is also open and bijective. Let § € RZ be defined
by 8(0) = 1 and 8(¢) = 0,V¢ # 0 and let x € RZ be such that py(s,67')x = 6.
Since the sequences ¢"d, n € N, and ¢7"5, n € N both converge to zero, ¢"x and
6~ "x must also converge to zero. This implies that x has finite support which yields
€ Rwu™'D*. O

2.2. The semisimple case

We now want to study in further detail the relation between Sp and Z. In some cases
we have equality: this happens when the ring R is semisimple (i.e. the intersection of
all the maximal ideals is {0}). Examples of semisimple rings which we have in mind
are the ring of integers Z and the ring of polynomials over a field k[zj,...,z].

We start with the following:

Lemma 3. Assume that R is semisimple. Let p € R[u,u™"] such that p(o,6™') is
injective and Im p(o,6~') 2 aR? for some a € Ry. Then, p € Ry - (R[u,u~'])*.

Proof. Write p ="  riu'. Let m be a maximal ideal in R such that a ¢ m. Consider
the residue field k:= R/m and let p = Z;’=mr',-u" € k[u,u"'] be the quotient projection
of p. It can easily be proven that p(c,0~!) is a bijective scalar shift operator and
since k is a field, we have that [12] p = bu’, where b € k* and I € Z. Consider
now any pair of coefficients r;,7;, with i # j, of p. Then, r;r; is in the intersection
J of all the maximal ideals of R which do not contain a. Let J' be the intersection
of all the maximal ideals of R containing a. Since R is semisimple we have that
J - J'CJnJ' = (0). Since (a) CJ’ and R is a domain, it follows that J = (0). This
yields r;r; = 0 for all pairs i # j. Hence, only one coefficient in p is non-zero. [

Proposition 4. Assume that R is semisimple. Then,

(1) S, N2 = (Rlw,u”'D*. In particular, every invertible scalar shift operator has
a continuous inverse.

(2) Sy = Z. In particular, every surjective scalar shift operator is open.

Proof. (1) Immediately follows from Lemma 3 and Proposition 1.



F. Fagnani, S. Zampieril Journal of Pure and Applied Algebra 122 (1997) 55-86 63

(2) Let p € X. Factor p = p, p, with p; € Eb and p; € Sp. Clearly, p; € S,NX =
(R[u,u"']*. Hence, p€ S,. O

We have another interesting consequence.

Corollary 5. Assume that R is semisimple and let p € Rlu,u'). Then, the following
conditions are equivalent:

(1) Im p(6,6") D aR? for some a € R,.

(2) Im p(c,67") is a closed finite memory R-shift.

(3) pERy- S

Proof. (1)=(3) Write p = p;p, with p; € S, and D2 € Sp. Since Im p(o,67!) =
Im p)(6,67!), we can conclude using Lemma 3.

(3)=(2) is evident.

(2)= (1) Assume that # has memory L. Write p = Y r' with rp,r, # 0. It
follows that

rm e rn
Fm e ¥
Therefore,
B, 270 Rito 13 (29)

and, since % has memory L,

ABOrkRE. O (30)
2.3. The complete case

Quite different results can be obtained for complete rings. Let m < R be a maximal
ideal. Assume that R is complete with respect to the m-adic topology 7. Consider the

. A ~ .
ideal 7 := m[u,u~'] in the ring R[u,u~']. Denote by R[u,u—!] the ri-completion of
R[u,u"']. We can think, in the standard way,

R w1 = [[Rm RO~ (1)

n>0

Proposition 6. Assume that R? is equipped with the product topology ™ (each factor
R is equipped with the topology t). The t°°-continuous R-homomorphisms of R? which

commute with o are in bijective correspondence with Rlu,u—1] in the following way:
A R 1
to p={p,} € Rlu,u—1] with p, € (R/m"R)[u,u"'], we associate

p(o,671): RT — R? (32)
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defined by

(p(o, 6~ Yo)(t):=a, (33)
where a € R is the unique element such that {amod(m")} = {(pa(c,0~ 1))} for
all n e N.

Proof. It is straightforward to verify that p(s,0~!) defined by (33) is continuous. On
the other hand, given a t®-continuous R-homomorphism ¢ : RZ — RZ which commutes
with ¢, we can consider the induced

én: (R/IM"RYE — (R/m"R). (34)

Since the quotient topology on R/m"R is discrete and ¢, is a continuous R/mR-
homomorphism which commutes with g, there exist p, € (R/m"R)[u,u~'] such that
én = pa(o,671). Tt is clear that, if we denote p = {p,}, we have that ¢ = p(a,67!).

O

Proposition 7. Let m < R be a maximal ideal and assume that R is complete in the
m-adic topology t. Then,
-~ e —
(1) Sy N Z = R, u=11)* N R[u,u™']. This shows that every invertible scalar shift
operator has an inverse which is continuous in the t°-topology.
e —e
(2) Z = (R[4~ )" NR[u,u7"]) - Sp.

Proof. (1) D follows from Propositions 1 and 6. Conversely, let p € S, NZ. It
follows again from Propositions 1 and 6, that p(a,a~!) is t°-continuous and invertible.
Since R with the topology t is inverse limit of Artinian discrete rings, it follows that
R is strictly linearly compact [10]. Then, also RZ is strictly linearly compact and,
consequently, p(o,6~") admits a t°°-continuous inverse. This yields p € (m YN
Rlu,u"'].

(2) As (2) of Proposition 4. [

. A . . . - .
Remark. It is easy to see that p = {p,} € R[u,u—!] is a unit if and only if p, is a

. . . - A
unit of (R/m)[u,u~']. Let « € m\ {0}. Clearly, 1 + au is invertible in R[u,u—!]. From
this it follows that, if R is not a field, we always have
Ik s Tk 1
Rlu,u™"1" # Rlu,u=1])" NR[u,u""] (35)
and, consequently, by virtue of Proposition 7, 2 # Sp.
Example. Let R = k[[z]], where k is a field. Every p:= a* + zg with o € k* and

q € R[u,u~'] induces an invertible scalar shift operator whose inverse is not continuous
if ¢ is not of the type ru* for some r € R.

Completeness turns out to be crucial in Proposition 7. Indeed, we now show that
there are examples of local rings (which are of course not semisimple), for which
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Proposition 4 still holds true. Let m be a maximal ideal of k[z;,...z;] and consider
the localization R := k[zj,...,2]n. Denote by ri the maximal ideal of R. The -
completion of R is the ring of formal power series k[[z},...,2]]. Consider now a
bijective R-morphism

¢:RY - RZ. (36)
It extends to an Ié-morphism
6B R (37)

which is still bijective (this can be proven by standard techniques of inverse limits [2]).
By virtue of Proposition 7, there exists p € k[u,u '][[z1,...2]] such that ¢o p(s,6~ 1)
= I. Necessarily, p(c,6"1)R? = R?. Write

P= D TunZy 2l (38)

with 7n,_» € k[u,u™']. If p & Rlu,u"'], then the lag of the r,, _,’s will not be
bounded and thus it would be easy to construct a sequence x € kZ such that

(p(0,67)0) = > (Pu,.m (0,07 WN0)] -+ 2 (39)

is not a rational function, in particular it is not in RZ. Thus, p € Ru,u~'] which
implies that the inverse of ¢ is itself a scalar shift operator.

The same result can be proven, repeating the argument word by word, for the ring
k{z,...,2z,} for k = R,C.

2.4. The PID case: some extra results

In the case of PID’s we have some extra results which turn out to be very useful
in the applications.

Lemma 8. Let R be a PID. Consider p € R[u,u™'] and write p = ap’ with a € R
and p' € R[u,u™"] primitive. Then,

Im p(0,6-1) = aRZ. (40)
Proof. Write p’ = )" rfu’. Fix now s € N and consider the s x (s + n — m) matrix
r’In rrln+1 DEEEY r”l 0 DR 0
0+, - H_,F 0
P , . (a1)
0o 0 r

It is clear that Im(P: "™ — R®) = (Im p/(o, 0'_1))|[1,s]- Elementary considerations
of linear algebra over R show that, since r.,,...,r, are coprime, P is surjective and so
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we have that (Im p'(g,67"))1,) = R®. Hence, Im p/(,6—') = R? which yields the
result. [

Proposition 9. Let R be a PID. Consider a polynomial p € Rlu,u™']. Then, p(c,67")
has closed range if and only if pe R- X

Proof. One way is trivial, while the other is direct consequence of the previous lemma.
O

Corollary 10. Let R be a PID. Let m < R be a maximal ideal and assume that R is
complete in the m-adic topology 1. Then,

Rlu,u"'1=R- 2. (42)

Proof. Let p € R[u,u~!]. Since R? is linearly compact and p(,5~!) is 7°°-continuous,
it follows that p(c,0~!) has a closed range. The result then immediately follows from
Proposition 9. [

2.5. Back to difference equations

We now return to difference equations showing how the results established in this
section can be used to solve specific problems.

Let p € R[u,u~'] and factor it as p = p; p, with p, € :S"b and p; € Sp. It follows
from Proposition 1 that

Ker p(0,67!) = Ker py(0,67}). (43)

Hence, the difference equation p(s,67')x = 0 has non-trivial solutions if and only
if p, is not a monomial. This proves that Eqgs. (9) and (10) have only the trivial
solution, indeed 1 — zu and 1 + u + zu? are in §b relative to the ring R[z][u,u~!]. On
the other hand, 1 + (z — 1)u — zu* = (1 + zu)(1 — u) and this explains why instead
Eq. (11) has non-trivial solutions. As we mentioned in the Introduction, the equation
p2(0,67)x = 0 is easy to solve and the solutions form a free R-module of dimension
n if the lag of p; is n + 1. This ends the discussion on the homogeneous problem.
Consider now the non-homogeneous problem

plo,c =y (44)
It can be transformed into the system

pi(a,a "Dl =y, (45)

pao, o Hx =1 (46)

As we already mentioned in the Introduction, (46) is easy to solve and there is a useful
way to represent its solutions. The difficulty lies in (45). If R is a semisimple ring, it
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follows from Proposition 4 that if p; & (R[u,u~'])* then, p;(a,67") is not surjective.
Hence, in this case (44) will not be solvable for all y € R%. The difficulty is that in
general it is hard to give useful characterization of the image. If we exclude the simple
case when p; € Ry, Corollary 5 shows that for semisimple rings Im p;(o,0~!) never
has finite memory. There is thus no hope to be able to express the image in kernel
form. Actually, if R is a semisimple PID, Proposition 9 shows that this image is not
even closed. A typical way to try to handle Eq. (45) is the following: enlarge the ring
R into a new ring where the scalar shift operator becomes surjective, solve the equation
in the new ring, and then check if the solution is in RZ. The easiest way to do this is to
work in the field of fractions of R: the drawback of this approach is however that the
scalar shift operator becomes surjective but looses injectivity. The non-homogeneous
equation in the field of fractions thus give an affine subspace of solutions and it may
not be very handy to go and check if one of these is indeed in RZ. A technique which
turns out to be useful in certain cases is to enlarge the ring by taking the completion
with respect to some suitable m-adic topology. We now present a series of examples
illustrating this technique.

Example 1. Let R=R[z] and let p=1-zu € R[u]. p € S, hence plo,c7 ) =1-zc
is not surjective and actually, by Proposition 8 the image is dense in RZ. Consider the
(z)-completion R[[z]]. It follows from Proposition 7 and the Example following it,
that

p(o,671): }?Z —R 47)
is bijective and the inverse is given by
+oo o
g(o,07 ) = Zz’a’. (48)
i=0
The solution of
plo,o Hx =y (49)
. aZ . .
in R is thus given by
400 )
x(t):= Z'y(t+i). (50)

i=0

This gives a way also to study (49) in RZ: given y € RZ, there exists x € RZ which
solves (49) if and only if

+o0

> Ayt +i)eRE) VieZ (51)
i=0
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and if this happens, then the solution is given by (50). Let us work a bit on condition
(51). It is actually sufficient that
+o00
> Z'¥(@) € Rlz). (52)
i=0
Writing y(i) =) Vi, 7/, we thus find the equivalent condition

Gng € N such that Y y;; =0 Vn>no. (53)

i+j=n
i>0

Notice in particular that, as it was easy to understand from the structure of p itself,
for all y € RZ which have right finite support, (49) admits solution in RZ. Moreover,
if y € RZ, then, it follows from (53) that (49) admits solution in RZ if and only if
y has right finite support. It is easy to check that this is no longer true if y depends
on z.

Example 2. Let R = R[z] and let p = 1+ z — zu € R[u]. As in the above example
p(a,671) has dense, not closed image. Passing to the completion and repeating the
same arguments as above (on the completion again the scalar shift operator becomes
bijective), then we get that the non-homogeneous equation associated with p and y €
R? has a solution if and only if

k
k
Vt€Z ng €N such that Z(j)y,ﬂ-,,- =0 Va>ng (54)
i+k=n j=0

and if this happens the unique solution is given by

+oo k
x(t):= ZZ(—I)"”( j’_‘>zky(t + ). (55)

k=0 j=0
The next example shows how things can also go bad.

Example 3. Let R = R[z] and let p = 1 + u + zu®> € R[u]. Again p(c,6~!) has
dense not closed image. What happens in the completion R = R[[z]]? Since p is
primitive as a polynomial in R[u,u™"], it follows from Corollary 10 that p(s,6~!) is
surjective as an operator on RZ; on the other hand, it does not admit an inverse in
the ring R[u,u~'][[z]], consequently it cannot be injective. This makes this example
more difficult than previous ones: we will not get linear conditions as above for the
solvability of the non-homogeneous problem in RZ. However, let us make some other
considerations. Note first that p is no longer irreducible on R[u,u™"]. Indeed, let a €
R[[z]] such that (1 +za)? = 1 — 4z. Then,

p:z(u__l_m) (u_—1+2im)

2z

_ <zu + 22—”) (u-3). (56)



F. Fagnani, S. Zampieri|/ Journal of Pure and Applied Algebra 122 (1997) 55-86 69

Note that

2
pL=zu+ +za=1+z(u+f) (57)

2 2

induces an invertible scalar shift operator. On the other hand, since a(0) # 0, we have
that u — o/2 is bimonic in R[u,u~'] so that the corresponding scalar shift operator is
surjective but not injective. The inverse of p;(a,67') in R[[z]]% is given by

+oo
—1y—1 _ k & k
pioe ) =Y (o4 2) , (58)
k=0
so that the set of all the solutions of p(g,6~')x = y in R[[z]}? is given by
. t'l t—1 aNJ +o0 . Ak . '
0= (3) 2 () (B (0+g) ») 10 (39

as A varies in R[[z]]. This formula is not very appealing and it may be practically
impossible to establish if, given y € R[z]Z, there exists A € R[[z]] such that (59) is a
polynomial for all t+ € Z. However, it may be possible to establish if there is at least
a solution which is analytic in a neighborhood of 0. Notice first that @ € R{z} so that
the decomposition p = p; p, still holds in the smaller ring R{z}[«,»~']. It is therefore
clear that such a solution exists if and only if

+00
Zz" (O’ + g)k y € R{z}~ (60)
k=0

and if this is true then, all the possible analytic solutions are given by (59) as 4 varies
in R{z}. While it remains impossible to find necessary and sufficient conditions for
(60) to hold true, it is nevertheless possible to find interesting sufficient conditions. Fix
first 0 > 0 such that « is convergent and bounded by 1 in the ball B(0,d). Consider
then a y € RZ. We have

()0l

k R
Z(j‘) (3) »e+k-5) 61)
0

j=
k

> (%) (1)j sup [y = sup [y (E)k. (62)
—~ \j) \2/ <i<t+k 1<i<t4k 2

Jj=0

IA

From this it follows that (60) holds if y € R? has exponential growth for positive times.
It also follows that (60) holds if y € R[z]? has bounded degree and the coefficients
have exponential growth for positive times.

The situation of the previous example regarding the local analytic case contains
general facts which are worth discussing a bit longer. Let £ be the real or complex
field and let p € k{z,...z,}[u,u”"]. Assume that p € S,. A priori p might have
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bimonic factors in k[[zy,...z,]][u,u~']. However, it follows from an easy application
of an important result by Artin 1] that this is not the case. p is in S, also relative to
the ring k[[z1,...2a]][u, 4" ']. Therefore, p(o,6~') remains injective on k[[z,...z,]]%.
This proves the following interesting result.

Proposition 11. Let R = k{z),...z;} and let R = k[[z1,...2]]. Consider p € k{z,...
zs}u,u™'}. Then,

Ker p(a,0~1) gz = Ker p(a, a_l)mz, (63)

where the closure is with respect to the product topology t*°.

Going back to the non-homogeneous problem, we thus have that injectivity is in this
case never lost when we pass to the completion. In the general case it is however not
easy to solve the non-homogeneous problem even on k[[zi,...z]]%. The case s = 1
however, because of Proposition 7 and Corollary 10, is completely solved and this
gives a good way also to study the problem on k{z}Z as it was done in Example 3.
In particular it can be easily shown that we can always find exponential growth type
sufficient conditions.

We now come to other examples.

Example 4. Let R = Z and let p = 1 —2u € Z[u]. This example resembles Example 1
and indeed it will be handled in a similar way though certain considerable differences
will appear in the end. Again p(c,6~') = 1 — 20 has dense, not closed image in RZ.
Denote by R the ring of 2-adic numbers namely, the completion of Z with respect to
the maximal ideal (2): elements of R can be represented as power series > a;2" where

a; € {0,1}. p(s,67 1) is bijective on £” and the inverse is given by
+00
g(o,67 ) = 22’0’. (64)
=0

Hence, given y € ZZ, there exists x € ZZ such that

p(o,0” x=y (65)
if and only if

+o0
X(t):=» 2yt+i)eZ Vtel (66)
i=0
Apart from Example 1 we cannot find any simple condition similar to (53): the diffi-
culty lies in the fact that integers inside the 2-adic complement do not simply corre-
spond to ‘polynomials in 2 (for instance we have that —1 = $°2%).

Example 5. Let R = R[z;,2;] and consider p = z; — zu. p(6,671) is injective. We
cannot say very much about the image except that it does not have finite memory by
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Corollary 5. In the completion R[[z;,2]], p(5,67") is still injective but, however, not
surjective: otherwise p would be invertible in R[u,u~'][[z;,2,]] while it is not. How-
ever, it becomes bijective if we invert z;, namely if we work in the ring R[[z;,23]][z; .
The inverse is given by

“+o00
g(o,67):= zl_l}__:(—l)kzl—kzzkak. (67)
k=0

By repeating the arguments of Example 1, we can easily prove that given a y € RZ,
there exists x € RZ such that p(s,6~')x = y if and only if

Vi€Z D yiuz)z’ €Rm] VneN, (68)
+j=n

or equivalently

VIEZ 3 eN Y yiulz)z’ =0 Vn>n, (69)

I+j=n

where y(¢) = 3", yi/(z1)z} with y,; € R[z].

3. Matrix shift operators
3.1. Polynomial matrices

Let A be a factorial domain. The rank of M € A'*9 is defined as the usual rank
with respect to the field of fractions of 4. M € 4'*9 is said to be full column (resp.
row) rank if its rank is equal to g (resp. /).

Let S C A4 be a multiplicatively closed subset. M € 4'%7 is said to be right S-factor
prime if it has full column rank and if M = M'F with M’ € 4’9 and F € 499 yields
det F € S. A matrix M is said to be left S-factor prime, if MT is right S-factor prime.

The following was essentially proved in [7, 9]. In the present form it can be found
in [5].

Theorem 12. Let R be a UFD. Let S C R[u,u™'] be a saturated multiplicatively closed
set. Let M € R[u,u~"V*9 be full column rank. Consider the following facts:

(1) M is right S-factor prime.

(2) Every common factor of q X q minors of M is in S.

(3) There exists N € Rlu,u='19%! and a € S such that

NM =al. (70)

Then, (1)< ()<= @3) If S™'R[u,u~'] is a PID, then (1)< (2)<> (3). If, moreover,
R is a PID, then all the previous conditions are equivalent.
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The following is in [9].

Lemma 13. Let R be a PID. Let A € R[u,u='1"*! with det4 = [ f, where f1, f2 €
Rlu,u='1\ {0}. Then, there exist F; € R[u,u™'1"*} with detF; = f; for i = 1,2 such
that

A= F\F,. (71)
We have another useful factorization result.

Lemma 14. Let R be a PID. Let M € R[u,u”'V*9 be a matrix of rank r. Then,
there exist matrices M1 € R[u,u~'}"*" and M, € Rlu,u='T*9 such that M = M, M,.
Moreover, if S CR[u,u™'] is any saturated multiplicatively closed subset, then M,
can be chosen to be right S-factor prime and M, left §-factor prime.

Proof. With standard techniques on the ring F[u,u~!], where F is the field of fractions
of R, we obtain matrices N; € R[u,u~']"*" and N; € R[u,u~']"*9, and a € Ry such
that aM = N;N,. Factor now N, = NjM, with N; € R[u,u~']>" and detN, € Ry, and
with My € Rlu,u™'7%9 left Ro-factor prime. It is now easy to show that there exists
M, € Rlu,u~11"*" such that M = MM, (see [9]). The last part is now a consequence
of Lemma 13. O

3.2. Matrix shift operators

Theorem 15. Let R be a UFD. Let M € R[u,u~'1"*4. Consider the following facts:
(1) M(o,071) is injective. N
(2) There exist X € Rlu,u='17%! and a € S} such that

XM =al. (72)
(3) M is right Sy-factor prime.
Then, (1)< (2)= (3). Moreover, if R is a PID we also have (2) < (3).
Proof. (2)=(3) is trivial and (2)=-(1) is a consequence of Proposition 1.
(1)=(2) M is full column rank because otherwise it would be possible to find a non-
zero sequence with finite support in the kernel of M(s,6~!). By standard diagonaliza-

tion techniques, there exist U € R[u,u~')"*¢, V, A € R[u,u—'19%¢ with det U,det ¥V € R,
and A diagonal, and r € Ry such that

rM:U[g] v (73)

Clearly, A(o,0™!) is injective and this yields det A € Sp by Proposition 1. Write

Adj(U) = [g;] (74)
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with U; in Rlu,u~1]7%’. We thus obtain from (73)

rUM = (det U)AV. (75)
Hence, if Z = Adj(AV), we have

rZUIM = (det U det Adet V)1, (76)

Hence (2) is proven with X = rZU, and a = det U det Adet V.
If R is a PID, (2)«(3) follows from Theorem 12. [J

For the rest of this subsection we will assume that R is a PID. Before analyzing
the class of surjective matrix shift operators, we need some preliminary definitions and
results. Consider Ry, := S, 'Rlu,u~"]. It follows from the arguments in [8] (Chapter
IV), that if R is a PID, also R, is a PID. For the sake of completeness we here give
a completely elementary proof of this fact. Let # be any ideal in R[u,u~!] such that
£ NR # {0}. For all n € N, define the following ideals of R

Joo={a€R.:Ip€R[ul degp < nwithau" + p € £}. an
Let a, € R be such that J, = (a,). Clearly, anja,—1. Let g, € F be such that

gn = angtt” + 4, (78)
where ¢, € R[u] and degg, < n.

Lemma 16. Let . be any ideal in Rlu,u™"'] such that # NR # {0}. Let a, € R and
gn € Rlu] be defined as above. Then ay,|q, for all n.

Proof. The result is obvious for » = 0. Assume it is true for n < & — 1 and prove it
for n = k. By contradiction assume that a; fgx and let m < k such that there exist
f>g € R[u] such that

gr=af +g (79)

and such that degg = m and a; does not divide the leading coefficient ¢ of g. Consider
now gn = am(u™ + g,,), where g, € R[u] with degg, < m. We know that a, = bay
for some b € R\ {0}. Let d,e € R[u] with dege < m such that

e=f—du"+q,). (80)
Consider

bqr — dgm =bar f + bg — dan(u™ + q,)
=am(f —dW"™ + q,)) + bg
=anme+bg e S. (81)
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Notice that the leading coefficient of bgq; — dgm equals the leading coefficient bc of bg
and that degg = m. Hence

bc = aa,, = aba; (82)

and so ¢ = aay which is a contradiction. U
Proposition 17. If R is a PID, then the ring Ry:= S, YRlu,u~"] is also a PID.

Proof. Let I be an ideal of R, and let e;,...,e; € R[u,u"'] be a set of generators for /
(as an ideal of Rp). Let e € R[u,u™'] be the greatest common divisor (in R[u,u~']) of
el,...,ex. Set f; = e~ 'e;. Denote by .# the ideal in R[u,u"!] generated by f1,..., f%.
It is now sufficient to prove that .# NS, # . Notice that, by construction, # NR # {0}.
Define the sequences @, and g, as in Lemma 16 and let a € R be the greatest common
divisor of the a, in R. It is clear that we can express any p € £ as follows:

s
P = u—l Z Ondn, (83)
=0

where o, € R and / is a suitable non-negative integer. Since a divides each g,, then
it divides also p. We can argue that a divides f,..., fi and since they are coprime,
then ¢ must be an invertible element in R. Hence a, is invertible for some 7 and,
consequently, the corresponding ¢, is a monic polynomial. In a similar way we can
show that there exists a polynomial in .# N R[u~!] whose lowest degree term has
invertible coefficient. This easily implies the existence of a bimonic polynomial in .#.
This completes the proof. O

We are now in position to give the characterization of the class of surjective matrix
shift operators.

Theorem 18. Let R be a PID and let M € R{u,u"'1"*9. Then the following are
equivalent:

(1) M(a,071) is surjective.

(2) There exists X € Rlu,u='19%! such that

MX = dl, (84)

where a € .
(3) M is left X-factor prime.

Proof. Since S, C Z, it follows from Proposition 17 that Z~!R[u,u~'] is a PID. There-
fore, (3) = (2) follows from Theorem 12 applied to MT.

(2)= (1) is trivial.

(1)=(3) It is immediate to check that M must be full row rank. Suppose M = AM’
with A € Rlu,u"'1"*! and M’ € R[u,u~']"*9. Passing through the Smith form of 4
in the PID X~ !R[u,u~'], we find U,V € R{u,u~')"*! with det U,det ¥ € I such that
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D:= UAV is a diagonal matrix. Clearly, D(g,67') is a surjective shift operator and,
therefore, det D € X. This yields det A € X and this completes the proof. [J

Theorem 19. Let R be a PID and let M € R[u,u™'1"*9. Then the following facts are
equivalent:

(1) M(o,071Y) is an open surjection.

(2) There exists X € R[u,u~'19%! such that

MX =al, (85)

where a € S,
(3) M is left Sp-factor prime.

Proof. Since S, 'Rlu,u~'] is a PID, (3)=(2) follows from Theorem 12 applied to
MT

(2)= (1) Let w, € (R")? converging to zero. Then, there exists, v, € (R*)? con-
verging to zero such that a(c,6™!)v, = w,. Put u,:= X(06,6"!)v,. Then u, — 0 and
M(o,67Yu, = w,. This yields (1).

(1)=(3) Write M = M;M, with M; right §b—factor prime and M; left Sp-factor
prime. We have that M;(0,0~!) is open. Using the same arguments of the proof of
Proposition 2, we obtain that M, must be square and invertible. [

Finally we want to study closed range shift operators. We first need a lemma.

Lemma 20. Let R be a PID and let M € R[u,u']"*? be such that M(o,6~") has
closed range. Let K C(R9)? be a closed R-submodule such that

(aR): CK C(RT)? (86)
for some a € Ry. Then M(o,67')(K) is closed.

Proof. M(s,671) induces a surjection
¢: (R/aRYYE — ImM(o,6~ ") a(ImM (0,67 1)). (87)

Clearly, K/(aR?)? is closed inside ((R/aR)?)?, and since this last one is linearly com-
pact [15], we have that M(o, 0 }(K)/a(ImM(c,07 1)) = ¢(K/(aR?)?) is closed inside
Im M (0,06~ !)/a(Im M(0,0~")). This implies that M(g,c~1)(K) is closed in (R))Z. O

We are now ready to characterize closed range shift operators. First, we introduce
another notion of primeness which is a generalization of previous ones. Let S CRy
be a multiplicatively closed set and let M € R[u,u~'}"*9 be a matrix of rank ». M
is said to be S-factor prime if given any factorization of type M = M), AM,, where
M, € Rlu,u™'1"", A € Rlu,u=']"*", and M, € R[u,u']"*9, we have that detA € S.
It is easy to see that if » =/ (resp. » = q), then M is S-factor prime if and only if it
is left (resp. right) S-factor prime.
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Theorem 21. Let R be a PID and let M be a rank r > 0 matrix in R[u,u~']">4.
Then the following are equivalent:

(1) M(o,67") has a closed range.

(2) There exist matrices X € R{u,u™'1"*!, Y € Ru,u'19%" such that

XMY = dl, (88)

where a € RyZ.
(3) M is Ro2-factor prime.

Proof. (1)=(3) Passing through the Smith form of M in the PID F[u,u~!], where
F is the field of fractions of R, we obtain that there exist matrices U € Rfu,u~']"*/,
V € Rlu,u"'19%9 with a = detU,b = det¥ € Ry and a diagonal non-singular D €
R[u,u='7>" such that

D 0
UMV = [0 0}. (89)
Notice that Im ¥ (a,6™1) is closed and
bR CIm ¥V (o,67") C(RT)®. (90)

Hence by Lemma 20, Im (MV )(0,07!) is also closed. Since U(o,o~!) is invertible
on its image, it follows that Im D(c,0~!) is closed. By Proposition 9, this implies that
detD € RpZ. In particular, we have that UMV is RyX factor prime and this immediately
yields that M is also RyZ factor prime.

(3)=(2) Write M = MM, as in Lemma 14. It is clear that M; is right RoX-factor
prime and M, is left RyZ-factor prime. The result then follows from Theorem 12.

(2)= (1) Consider the factorization M = MM, as in Lemma 14. Since we have
AMM,Y = al, it follows that det(XM)),det(M,Y) € RpX. It easily follows from
Theorem 12 that by a suitable choice of the factorization we can assume that M; is
right Ry-factor prime and M, is left Z-factor prime. By Theorem 18, Im M(o,67!) =
Im M;(o,67!). Since, by Theorem 12, M (c,0~!) admits a continuous inverse on its
image, the result now follows. [

3.3. Systems of difference equations

Consider first the homogeneous equation
M(o,67 Y =0, (91)

where M € R*™™9[u,u~']. We would like to note first of all that Theorem 15 fur-
nishes a way to establish for any Noetherian factorial domain if, given a matrix M,
Ker M(o,07!) is empty or not: indeed conditien (1) of Theorem 15 is equivalent, by
Theorem 12, to the more concrete condition that the common factors of the principal
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minors of the matrix M must be in S,. If R is a PID it is possible to say much more
about Ker M(a,071).

Assume that M has rank r. Using Lemma 14 we can factor M = MM, where
M, € R™¥"[u,u~"] is right S,-factor prime and M, € R™9u,u~'] is left Sy-factor
prime. By virtue of Theorem 15, we have that

Ker M(o,07!) = Ker My(0,071). (92)

In studying (91) we can therefore assume that M is left Sp-factor prime. Under this
condition it can be determined a characterization of the class of kernels that are con-
trollable and so that admit an image representation.

Theorem 22. Let R be a PID and let M € R"9[u,u™"] be left Sy-factor prime. Then,
the following are equivalent:

(1) #:=KerM(o,067") is controllable.

(2) There exists X € RI*'[u,u'] such that

MX =] 93)

(3) The ideal generated by the I x [ minors of M coincides with R{u,u™"].

Proof. (2)=-(1) It is easy to verify that
KerM(o,67 )y =Im(I — XM)(a,067")

and this implies that 4 is controllable.
(3)=(2) Let my,my,...,m; be the I x I minors of M. There exist A, hy,...,hs €
R[u,u~'] such that

s
Z him; = 1. (94)
i=1

Suppose that S; is the selection matrix (i.e. a matrix in R7%/ with only zeros and ones),
such that m; = det(MS;). Then

5 5 5
I=> hml =" h(det MS)] =M (Z hsS; Adj(MS,-)) (95)
i=1 i=1 i=1

(1)=(3) First we want to show that M is left (R[u,u—'])*-factor prime. Factor
M = FN with F € R"/u,u~'] with det F € Sy and N € R**¥[u,u"] left (R[u,u~'])*-
factor prime. Since & is controllable, then there exists a polynomial matrix P such that
B = ImP(a,a‘l). Notice that MP = O and so also NP = 0 holds true. From these
facts it is easy to verify that

KerN(o,67') = KerM(a,07!). (96)
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Let X € R7[u,u='] be such that NX = al for some a € Ry. Then, if w €
Ker F(6,06~!) we have that

0 =aF(a,6"\Yw = (FNX)(g,0 " )w = (MX )(o,0~ )w.
By (96), we also have
aw = (NX)(o,6 ' )w =0

that implies that w = 0. This means that F(s,07') is injective. By Theorem 15, F is
invertible and so M is left (R[u, u~'])*-factor prime.

Let m be a maximal ideal in R. Consider the residue field k:= R/m. Let M be the
quotient projection of M over k'*9[u,u~'] and let := KerM(c,6~') C(k9)%. It can
easily be proved that since M(a,0~!) is surjective, then M(o,0~") is surjective. We
want to show that  is controllable. This follows easily from the fact that any w € #
admits a representative in &. Actually, if w € Ker M(o,67!) and w is a representative
of w, then M(o,6~")w = kv and, since M(a,0~") is surjective, there exists u such
that v = M(6,6~")u. This implies that M (6,671 )(w — ku) = 0 and so w — ku is a
representative of w that is in 4.

Let J be the ideal generated by the I x I minors of M. Since M is left (R[u,u~'])*-
factor prime, then there exists a € Ry such that a € J. Let &k be a prime in R such that
a = d’'k. From the previous considerations we can argue that the projection of J on
R/(k)[u,u"'], that coincides with the ideal generated by the ! x ! minors of M, cover
all R/(k)[u,u"'], and so there exists p € R[u,u~'] such that 1+ kp € J. This implies
that

d=d(l+kp)—apecJ

A simple induction argument then shows that 1 € J. O

Remark. In applying Theorem 22 it is necessary to be able to determine if an ideal
generated by a finite family of polynomials contains 1. Note first that, given an ideal
I in R[u,u~'] generated by gi,...,gs, then I N R # {0} if and only if g,...,g. are
coprime as polynomials in F[u,u~!], where F is the field of fractions of R. Therefore
the condition 7 N R # {0} can be verified by using the Euclidean algorithm in the
Euclidean domain Flu,u~'].

Suppose now that we have found that a € Ry is in / and let

M = {m € max(R): a € m}.
Again by Euclidean algorithm in R/m[u,u'] it is possible to verify if the ideal in

R/m[u,u~'] generated by g, + m[u,u"'1,...,gn + m[u,u""] coincides with R/m[u,u~'].
This is the case if and only if I = R{u,u~']. It is easy to see that since R is a principal
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ideal domain, the set M is finite. Therefore the check of the equality 7 = R[u,u~']
requires a finite number of applications of the Euclidean algorithm.

Note that the previous theorem provides a technique for obtaining an image repre-
sentation of # (# = Im(I — XM )(o,0™!)). This image representation however pro-
vides a non-injective parametrization. This drawback can be overcome in the following
way. The fact that there exists X such that MX = I implies that there exists M’ €
R@=D%4[y, 4='] be such that

M
[ M,] )

is invertible. Let X € R [u,u~'], X’ € R?*@~D[u,u~'] be such that [X X'] is its
inverse. It is easy to verify that

B =ImX'(o,67") (98)

and that X’(,67!) is injective.

As we have seen, when # = Ker M(o,07!) is controllable, then the parametrization
of the solutions of the homogeneous difference equation (91) is particularly simple.

In general, given # = KerM(o,07!), there exists the largest controllable closed
R-shift inside & denoted by 4., that can be seen to have finite memory [14]. In our
case there is a concrete way to characterize .. Factor M = FN with F € R™*![u,u™]
with detF € S, and N € R'™>9[u,u~'] left (R[u,u"'])*-factor prime. There exists
N' € R4—Dx4[y, 417 such that

N
det [ N,] € Ry(R[u,u"'])*. (99)
Let X € R?[u,u='], X’ € R¥*@~D[u,4~!] such that
N N ,
pOd! [N] = [N] XX'1=rl, (100)

where r € Ry. Finally, factor X’ = PF' with P € R9*@~D[y,4~1] primitive (i.e.
right Ro-factor prime) and F’ € RY~D*@—D[y 411 with det F’ € Ry. We have the
following:

Proposition 23.
B, =ImP(o,07 ). (101)

Proof. ‘O Since 0 = MX' = MPF’, it follows that MP = 0. This proves the inclusion.

‘C* By definition of 4, it is enough to show that if P/ € R9**[u,u~'] is such that
ImP'(6,6~"') C &, then Im P'(¢,6~') C Im P(s,6™1). Now, if MP’' = 0, it follows that
NP’ =0 and so from (100) we have

rP' = XNP' + X'N'P' = X'N'P' = P(F'N'P’). (102)
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Since P is primitive, it follows that (see [9]) there exists X € RE—D*s[y 4~1] such
that P’ = PX. This completes the proof. [

When Ker M(o,07") is not controllable, it is not possible to parametrize its elements
through the image of a shift operator since the controllable part does not cover all of
Ker M(ao,07'). We have to add to the controllable part a finitely generated free R-shift
as shown in the next proposition.

Since S;'R[u,u~'] is a PID, then there exists M’ € R9=9*4[u,u~'] such that

M
pi=det [M’] € Sp. (103)
Let X € R?u,u'], X' € R D[y, 1] be such that
M
Adj [M,] =[x X (104)
We have the following:

Proposition 24. Let %:=Ker M(c,67"). Then we have the following:
(1) The controllable part of # is given by

B, =ImX'(a,067"). (105)
(2) The following decomposition
RB=2RB+ B, (106)
holds, where
% = X (0,0 1) (Ker p(o,6~ ) (107)

if finitely generated free as an R-module.
(3) We have that

BN B, = (XM )o,6~ " YKer p(a,6~ ). (108)

Proof. Suppose that w = X(o,6"')v with p(c,6")v = 0. Then M(s, 0 )w =
MX (6,67 ) =0 and so

X(o,67 " )Ker p(g,6 ) CKer M(a,671).
On the other hand it is clear that

ImX'(0,6~ 1) CKerM(c,067")
and thus

BOHB+ImX (0,067).



F. Fagnani, S. Zampieri/ Journal of Pure and Applied Algebra 122 (1997} 55-86 81

Suppose conversely that M(a,67')w = 0. Since the shift operator associated to the
polynomial matrix [X X'] is surjective, there exists v such that

w=[X X')(o,67" Y =X(0,67 Y0, + X'(0,67 0>
Moreover
plo,0 VY = MX(0,67 Yy = M[X X'(6,6" v =M(o,6 " w=0
and so we have that
BCH+ImX'(5,67")
and thus
B=2%+ImX (c,67 ). (109)

We want to show now that Z, = ImX’(g,67!). It is clear that . D ImX’'(c,0").
Since %, is closed and controllable, then by [14] there exists a polynomial matrix
P such that B, = ImP(s,67!). Let w € %.. Then, since p(s,67 ') is surjective,
w € Im pP(6,07!) and so there exists v € ImP(a,6!) such that w = p(,0 ).
Using (109) we have that v = v; + v,, where v; € % and v, € ImX'(6,6~1). Then

w= p(a,6 Y= pla,67 Y, + plo,6" Y, = p(o,6" v € mX'(a,67").

Finally, suppose that w € 2 N %B,. Then w = X(g,6~ v, = X'(6,6~")v, with
p(6,67 ), = 0. There exists u such that

v M _
[_:)2] = [M’] (0,06 Y.
This implies that u € Ker p(6,07") and that w = X (0,6~ )v; = XM(0,6~ " )u. Suppose
conversely that w = XM (o,0~ " )u, with u € Ker p(s,6~"!). Define v:= M(o,0~ .

Then it is clear that p(o,6~!)v = 0 and so w € X(0,0~")(Ker p(o,6~')). Moreover,
since

0= p(o,0 Yyu=XM(0,6 Yu+X'M(6,67 ),

we have that w = —X'M'(g,6")u and so w € ImX'(6,6~!). O

The previous proposition provides a way for parametrizing the trajectories in
KerM(o,67!) by an image representation and by an R-shift that can be generated
through the techniques presented in the scalar case. The only drawback of this para-
metrization is that it is not injective since %N 4%, is not zero in general. Notice more-
over that the previous proposition provides also an alternative way to compute the
controllable part of Ker M(o,67!) based on a completely different technique than the
method shown in Proposition 23. It is worth noting that the method presented in Propo-
sition 23 is usually more efficient and direct since it is based on algorithms working on
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matrices with entries in the PID R 'R[u,u], that are much easier than the analogos
algorithms working on matrices with entries in the PID S~ "Rlu,u1].
We now turn to the non-homogeneous case

Mo, 6" o =w. (110)

If M is not RySp-factor prime, there are all the difficulties which already appeared
in the scalar case. Indeed, in the semisimple case, it follows from Theorem 21 that
#:=ImM(c,67') is not closed and hence not easy to characterize. We concentrate
here on the case when M is RySp-factor prime. In this case we know that # is a closed
controllable R-shift. It follows from the results in [5] that then % has necessarily finite
memory and it will therefore admit, for the considerations done in the Introduction, a
kernel representation. We now show how to find it explicitly.

We can factor M = MM, with M; € R"™"[u,u™'] right Ry-factor prime and M, €
R™9[u,u~'] left Sj-factor prime. We can therefore transform (110) into the system

Mi(o,67x = w, 111D
My(o,67 Y = x. (112)

Note that, by Theorem 18, (112) is always solvable in v for every x. Consider now Eq.
(111). Note first that, by Theorem 15, M;(0,67!) is injective. Hence, if a solution x
exists, it is unique. It follows from Theorem 12 that there exists ¥ € R"™*/[u,u!] and
r € Ry such that YM; = rI. Hence, if x solves (111), we must have rx = Y(o,0~)w.
Therefore, we first find a necessary condition for w € 4 := Im M;(g,67!). We must
have

r| Y(o,67 . (113)

Assume now that (113) is satisfied and consider x = r~'Y(g,0~!)w. Substituting in
(111), we obtain the second condition

(MY —rl)o,67)yw=0. (114)

It is clear that the two conditions together (113) and (114) are necessary and sufficient
for w € 4. If we consider the shift operator

v (R — RR) @ (R, (115)

Yy(w):= (n(¥Y (0,6~ yW), (MY — rIXo,067w), (116)
where n: (R")2 — (R"/rR")? is the canonical projection. We have that

Keryy = # = ImM(o,07"). (117)

Moreover, if w € ImM;(0,07'), the unique solution of (111) is given by x =
r~1Y(o,67!)w. Note that we have also proved that M;(c,6~') is open on its im-
age so that also M(o,0~!) is open on its image: equivalently we can say that (110)
has the finite property as discussed in the Introduction.
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What remains to be done is to show how to explicitly solve (112). We have already
discussed how to solve the homogencous equation associated to M,. Hence, to solve
(112), we only need to find an explicit solution. It follows from Theorem 18 that there
exists X € R?"{u,u~'] and r € S such that M,X = rl. Find first € (R")? such that
r(o,6~ )T = x. We have that

x = r(0,6 DI = My(0,6 )X (0,67 1)§ (118)

which shows that v = X(o,07!)5 is an explicit solution of (112). This completes our
analysis.
We now present an example to show how to concretely apply our results.

Example 6. Let R = R[z]. Let

_f —zu+ 222 —z(u—-2) 27?
M:= (—u— 143z —2u-2) 3z (119)
and consider first the homogeneous difference equation
M(e,6" Y =0. (120)

It is easy to check that the greatest common divisor of the principal minors is z(x—2) so
that M is left RyS,-factor prime. Using standard techniques we can factor M = M| M,,
where

z z _futz+1 0 z
Ml'_(l 2), Mz.—< s 1 2y z)' (121)

M, is left S,-factor prime. In studying the homogeneous problem we can forget M.
Since u — 2 is a common divisor of the principal minors of A, then by Theorem 22
we can argue that #:= Ker M(o,0~!) = Ker My(0,67!) is not controllable.

Factor again M, as M, = FN, where

u 1 -1 i 0
Fi= (2 1), N:= (Z+1 . z). (122)
Note that N is left R[u,u~']*-factor prime. Complete it to
-1 1 O
N=|z+1 —-u z]. (123)
1 0 0

We have that

Adj(N) = (124)

RN O
_— O
N
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Hence the controllable part of % is

z
B, =Im z . (125)
a—(z+1)

Complete now M, to

—u+z+1 0 z
My:= z—1 2—u z|. (126)
0 11
We have that
2—u-z z z(u —2)
Adj(M,) = 1~z —u+z+1 z(u—2) (127)

z—1 u—z—1 W—-2Yu—z-1)

and g:=det M, = (u—2)(u— 1) € S;. Let

2—u—z z z(u —2)
X:= -z —ut+z+1]|, X = z(u —2) . (128)
z~—1 u—z—1 (u—-2)u—z-1)

These matrices are such that Adj(M,) = [X X’]. Then the controllable part of & is
given also by ImX’(g,67!) ( as it can be easily verified) and moreover

B=R+A., (129)
where % = X (0,0~ 1)(Ker g(0,6~")I). Notice that w € Ker g(5,6~")I if and only if
wi(t)=C4'B, VieZ, (130)

where

0 1
A:(_2 3), C=(10)

and B may be any matrix in R?*2. Noting that X = Xj + Xju, where
2—z z /—1 0 \
Xo=|1-z z+1 ], x=|0 -1}, (131)
z—1 —z-1 k 0 1
we have that v € X(g,07!)(Ker g(o,67")I) if and only if
vT(t) = CA'(BX] + ABX[), VteZ, (132)

where B is free to vary in R?*2,
We pass now to consider the non-homogeneous equation

M(o,07 Y =w. (133)
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Consider the factorization M = M M, as above. In this case we can immediately see
that

ImM(o,67!) = ImM(s,67!):= {(Z:v”l) | wi,wy € RZ}. (134)
2
Let now fix
w= ( Wy ) . (135)
The unique solution of M;(g,67!)x = w is given by
x= <2w1 _wz). (136)
—wWi +wy
To find a particular solution of (133), solve first the equation
o 2wy —wy
1—-w)(2-wli= . 137
(1= w)@ = w7 (_wl+w2) (137)

A particular solution is given by

= aw@) —w(r) 0\ [0 1\ 'F/o

Ho= 2 (—wl(t) +wi(t) 0)\3 =2 1 (138)
and so a particular solution of M;(s,6~!)v = x is then given by X (0,0~ !)d which
provides a particular solution also of (133).

3.4. An extension to the ring of local analytic functions

Even if we consider only one variable, the ring of locally convergent power series
R = k{z} (k = R,C) is not a PID. However, some parts of the theory developed in
this section can still be applied to this case. Two basic facts are the key ingredients to
do this: first, its completion R = k[[z]] is indeed a PID; second we have the important
result by Artin [1] already recalled in Section 1 which essentially permits us to solve
systems of polynomial equations in R once we know that a solution exists in R. Using
these two ingredients in a carefully way, we can prove in a lengthy but straightforward
way that Theorem 12 and Proposition 14 still hold true if R = k{z} and S = Sh, Sh, Ro.
With this we can then show that all the results for systems of difference equations
established in the last two subsections can be extended to the case R = k{z}. Notice
also that Proposition 11 admits a straightforward extension to the matrix case. Finally,
notice that for the ring R = k[[z]] also non-homogeneous problems with matrices M
which are not necessarily RyS,-factor prime can be treated via the results obtained in
Section 2 for the complete PID’s. This permits us, in principle, to study general matrix
non-homogeneous problems for R = k{z} using the same techniques than in the scalar
case as in Example 3 of Section 2. We omit all details.
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