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Abstract 

In this paper we study a class of operators which act on spaces of sequences taking value on a 
module over a Noetherian factorial domain. These operators are obtained as linear combinations 
of the operators that shift the sequences forward and backward. For this reason they are called 
shift operators. The properties of this class of operators are effectively applied to study difference 
equations and dynamical systems over rings. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 151433, 15A54, 39A10, 58F03, 93B25 

1. Introduction and notation 

1.1. Disference equations mer rings 

Let R be a ring and let r,,,,. . ., r, E R with m 5 n E Z. Consider the difference 
equation 

r,x(t+m)+r,+,x(t+m+1)+~~~+r,x(t+n)=0. (1) 

Does there exist a non-zero solution of (1 )? In other words, does there exist a non-zero 
sequence n = {n(t)}tcn E R” such that (1) is satisfied for all t E Z? More generally, 

consider the non-homogeneous problem: given a sequence y = {y(t)},,Z E R’, does 
there exist a sequence x = {x(t)}lEz E R” such that 

r,x(t+m)+r,+1n(t+m+l)+...+v,x(t+n)= y(t) (2) 
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for all t E Z? We are interested in characterizing the set of all the solutions of (1) and 

(2) and also to establish concrete algorithms to construct such solutions. If R = k is a 

field, things are quite simple: excluding the trivial case in which all the rj’s are equal 

to 0, we can as well assume that r, and r, are non-zero. Then, for every y E kz, the 

set of all the solutions of (2) form an affine k-subspace YY C kz of dimension n - m. 

The freedom in the solution corresponds to the fact that we can arbitrarily assign the 

value of n in n - m consecutive time instants and then solve uniquely in a recursive 

fashion backward and forward in time using (2). Notice that, as a consequence, there 

exists a non-zero solution of (1) if and only if n - m > 0. A remarkable fact is that 

J; depends on y in a finite way, namely 

~1, ~2 E k” YII[~,~I = YZI[~,~ * y;, I [a+m,b+nl = spyz 1 [a+m,b+n]¶ (3) 

where we have used the symbol 1 to denote the restriction of sequences to a certain 

index subset. Similar considerations can clearly be repeated for general integral domains 

R in the case the leading coefficients r, and r, are units. There is another useful way 

to represent solutions of (2) (in the case r,,, and r, are units) which we now quickly 

recall for later use. Introduce an auxiliary variable 

x(t) 

r(t):= 
x(t + 1) 

i : 1 . 9 

x(t+L- 1) 

where L = n - m. Define now 

0 1 0 . . . 0 0 

0 0 1 . . . 0 0 

A:= i 

0 0 0 . . . 0 1 
-r;‘rm -r;‘r,+l -1 -rn rmf2 ... -rn -lrn_2 -r;‘r,_l ! 

C:=( 1 0 ... 0). 

The solutions of (2) are then given by 

{ 

5(t + 1) = At(t) + by(t - m), 

x(t) = Gxt) 

as <(O) = to varies in RL. From (7) we get the closed expression 

t-1 

x(t) = C[A’So + xAt-‘-‘by(k - m)], t E Z. 

k=O 

(4) 

(5) 

(6) 

(7) 

(8) 
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The difficulty starts when at least one of the leading coefficients r,,,,r, is no longer 

a unit. A lot of pathologies can then happen even for relatively simple rings. As an 

example, in the case R = [w[z], consider the equations 

x(t)-iX(t+l)=O, (9) 

x(t) + x(t + 1) + zx(t + 2) = 0, (10) 

x(t)+@- 1)x(t+1)-zX(t+2)=0. (11) 

It is easy to check that (9) has only the 0 solution and the same is true for (10) (see 

Section 2). On the other hand, (11) admits non-trivial solutions: x(t) = p constant 

where p E R[z]. The non-homogeneous problems associated with the above difference 

equations are not easy to solve and only partial results can be obtained. These examples 

will be taken up in Section 2: in particular, we will show that they do not satisfy finite 

property (3 ). 
Eqs. (1) and (2) can be expressed in a more compact form. Denote by CT the back- 

ward shift on R” defined by (ox)(t) := n(t + 1). Consider the Laurent polynomial 

p:= ~&JjZJ j. It induces an R-homomorphism called a scalar shift operator 

p(a, CT-‘): R” + R”, (12) 

p(0, CJ-‘)X I= krj(O’X). 

j=m 
(13) 

Eq. (2) can be written as 

p(a, 8)x = y. (14) 

In order to solve previous problems one is then naturally led to study the kernel and 

the image of scalar shift operators. 

A straightforward generalization of this problem can be obtained in the following 

way. First let us set some more notation. If V is an R-module, denote by V[u,u-‘1 

the R[u, u-‘l-module of Laurent polynomials with coefficients in V. Let V, W be R- 

modules and consider the corresponding sequence spaces V” and W” on which the 

shift e (by abuse of notation we always denote it with the same symbol) acts as on 

R”. Let now M = ‘j$,M_uj E HomR( V, W)[u, u-l]. It induces an R-homomorphism 

M(a,K’): v” -+ w z ) 
(15) 

M(C,fl-')U = ~iVfj(OjZl). 
(16) 

j=m 

M(a,o-') is said to be a shift operator. We can study the equation 

M(o,c+)u = w, (17) 

where w E W”. In the case V = Rq and W = R’, this clearly corresponds to study 

solution of a system of 1 difference equations in q distinct sequence variables. 



58 F. Fagnani, S. ZampierilJournal of Pure and Applied Algebra 122 (1997) 55-36 

There are several reasons for studying difference equations over rings. We first recall 

that it follows from the work of Willems [ 12, 131 that the theory of linear control 

systems in discrete time is ultimately the study of kernels and images of shift operators 

over real or complex vector spaces. On the other hand, in the last decades there has 

been a growing interest in trying to extend the linear control theory to more general 

algebraic structures like rings and modules [3, 111: this, in Willems’ framework, leads 

exactly to the objects of our investigations: shift operators over modules [14]. An 

especially important case is when the ring is an algebra of functions, since in this 

case difference equations over such rings can be interpreted as a family of linear 

difference equations parametrized by certain parameters living on a topological space, a 

manifold, an algebraic variety. In this case, it is reasonable to ask if they admit solutions 

which are also parametrized with the same regularity that the coefficients had. Kings of 

functions considered in this paper will mainly be the ring of polynomials k[zi, . . . ,z,J 

and the ring of convergent power series k{zi,. . . , z,}. Another motivation is related 

to the symbolic dynamics over infinite alphabets. As it will appear more clearly in 

next subsection, kernels and images of shift operators can be interpreted as dynamical 

systems with a module structure which have a lot of interesting dynamical properties. 

In this regard the case of the integers Z is probably the most interesting: see [S]. 

1.2. A dynamical systems point of view 

Let V be a finitely generated R-module equipped with the discrete topology and 

consider the sequence R-module V” equipped with the product topology. The dynamical 

system (V”,o) is called the full R-shift over the alphabet V. More generally, let 

B s V” be a (closed) a-invariant R-submodule. Then, the dynamical system (a, olg) 

is called a (closed) R-shift over V. For the sake of simplicity, whenever this does not 

cause confusion, the restriction sign in (r will be dropped. Also, we will refer to g 

itself as the R-shift (B,o). 

Consider two R-shifts Bi and 92. A map $: gi -+ P& is called an R-morphism if 

+G is a continuous R-homomorphism and $ o IS = o o +. Shift operators are R-morphisms 

between full R-shifts and it can easily be shown that these are all the possible ones. It 

thus follows that kernels of shift operators are closed R-shifts. On the other hand, as 

we will see later on, an image of a shift operator may not be closed. It is, however, 

an R-shift. 

Kernels and images have a sort of duality property: given a kernel R-shift B’, it is 

difficult to construct elements belonging to it, in particular it is difficult to check if 

B # (0). On the other hand, it is easy to check if a given sequence v is in g. The 

converse is true for image R-shifts: it is difficult to establish if a given sequence is in 

B but it is easy to construct elements. For this reason, when one is confronted with 

the difference equations 

M(a, o-‘)v = 0, (18) 

M(o,fY’)v = w (19) 
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may naturally pose the following problems: 

(1) Parametrize the set of solutions of (18). 

(2) Check the solvability of (19). 

(3) Parametrize the set of solutions of ( 19). 

The answers to the previous questions are connected with two important concepts of 

systems theory and symbolic dynamics: controllability and finite memory. Let B C V” 

be an R-shift. g is said to be controllable [12] if for all ui, ~12 E B, there exists n E N 

and v E .?+S with 

u(t) = q(t) vt < 0, (o%)(t) = Q(t) vt 2 0. (20) 

On the other hand, if I & Z, denote by .!?#,I the R-module of restrictions of the bi-intinite 

sequences in B to I. B is said to have memory n E N if 

U E V” and ~,~+~l E Bl~~,,+~l vt E z * u E g. (21) 

B is said to have jinite memory (or to be of Jinite type), if it has memory n for some 

n E N. In the field case it happens that every closed R-shit? has finite memory. This 

is not true in general, not even for principal ideal domains (PID’s) [4]. It can easily 

be shown that if g is controllable, then it is topologically transitive as a dynamical 

system. The converse is also true under the assumption that W has finite memory. 

Consider the first problem. As mentioned above an efficient way to parametrize the 

set of solutions KerM(a, a-‘) would be to express it as the image of a suitable shift 

operator. It has been shown in [14] that a closed R-shift can be expressed as the image 

of a shift operator if and only if it is controllable. It is clear that a kernel is closed 

but not necessarily controllable. For instance, in the scalar case discussed above we 

have that a kernel is never controllable, unless it is (0) or R”. Therefore, in order 

to understand when the solution set of a homogeneous difference equation admits an 

image representation, we have to characterize the class of kernel R-shifts which are 

controllable. Also when the set of solutions @ := KerM(a, 0-l) is not controllable, 

there exists the largest controllable closed R-shift inside g, that is denoted as B= and 

that can be described as the image of a suitable shift operator. We will see in the 

sequel that in general g can be written as sum 

where & is a finitely generated free R-shift. Therefore Bc can be represented as the 

image of a suitable shift operator, while the elements of & can be fruitfully described 

through a generalized initial conditions fashion. The only drawback of this parametriza- 

tion is that it is not injective in general since the previous sum can not always be found 

directly, unless R is a field. 

Consider now the second problem. This consists in finding an efficient way to decide 

whether for a certain w there exists a solution or not, or, equivalently, in finding an 

efficient method for checking if w E ImM(u, a-‘). As mentioned above, expressing 

ImM(o, o-i) as the kernel of a suitable shift operator would provide this method. 
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However there are cases in which this is not possible and these occur just when 

ImM(a, a-’ ) does not have finite memory. Actually, it is clear that kernels have 

necessarily finite memory. Also the converse is true: if g G Vz has memory N, consider 

the R-projection 

f : vN+’ + P-/La I[O,N] = w. (22) 

It induces a shit? operator 

$1 v” + WV” (23) 

by 

(ti u)(t) := f (q[*,f+Nl) (24) 

and g = Ker +. It may well happen that W is not free even if V was. See [6] for 

further discussion on this point. 

In the case R is a field, every closed R-shift has finite memory and moreover the 

image of a shit? operator is always closed. Consequently in this case the situation is 

simple. When R is a ring (different from the field case) images of shift operators are 

not necessarily closed, in particular they may not be kernels. In these cases it turns 

out to be very difficult to exploit the structure of these images and we do not know 

any systematic way to do it. In Section 2 we discuss some techniques for the scalar 

case (see Examples l-4). In principle it could even happen that an image is closed 

but does not have finite memory. We do not have any example of this sort but there 

is a positive result: if R is a PID, then, if an image is closed, it has finite memory [5]. 

If an image has finite memory then, by previous considerations it is also a kernel. 

Finally, since Eq. (19) is linear, the third problem reduces to solving problem 1 and 

to finding a particular solution of (19). 

1.3. Outline of the contents and extensions 

All rings considered in this paper will be commutative Noetherian with identity 

element. In Section 2 we make a fundamental study of scalar shift operators in the 

case when R is a commutative Noetherian factorial domain (or unique factorization 

domain UFD). We establish a correspondence between set- and topological-theoretic 

properties of such maps and algebraic properties of inducing polynomials. We then pass 

to show how these results can be fruitfully applied to study scalar difference equations: 

we have a complete result for the homogeneous case and partial results for the non- 

homogeneous case. In Section 3 we pass to the matrix case for principal ideal domains 

(PID’s). We first make a fundamental study of shifl operators and we then pass to 

consider systems of difference equations: we establish quite complete results for the 

homogeneous problem and partial ones for the non-homogeneous one. Finally certain 

extensions to Noetherian factorial domains which are not PID are also considered. 

The assumption that R is a Noetherian factorial domain seems to be crucial in order 

to obtain a systematic theory as the one developed in this paper for the scalar shift 
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operators. On the other hand, a systematic extension to the matrix case is unlikely to be 

possible without the assumption that R is a PID. However in many specific situations it 

may be possible to have remarkable extensions. The work [6] contains many elements 

which actually go in this direction: there, the properties of the shift operators are more 

intimately related to dynamical properties of R-shifts than in this paper. 

2. Scalar shift operators 

2.1. First results 

In this section, R always denotes a commutative Noetherian factorial domain (UFD). 

Denote by R* and Ro the sets of invertible elements and of non-zero elements in R, 
respectively. A multiplicatively closed subset SC R (0 $Z S, 1 E S) is said to be 

saturated if for all a, b E R we have that ab E S M a, b E S. Let S CR be a saturated 

multiplicatively closed set. Define 

$:= {a E R 1 (b $! R*, b divides a) + b #S}. (25) 

It is easy to see that $ is also a saturated multiplicatively closed set in R. 
Consider R[u,u-‘I. p = C&, riui E R[u, u-l], with r,,,,r, E R*, is said to be bi- 

manic. Denote by sb the saturated multiplicatively closed subset of all the bimonic 

polynomials in R[u,u-‘1. Sb and $, will play an important role in the sequel. Other 

relevant multiplicatively closed subsets in R[u,u-‘1 are R,J and (R[u,u-‘I)*. 20 con- 

sists of the so called primitive polynomials. Notice that R,-, is not saturated, while its 

saturation is Ro . (R[u, u-‘I)* = &. 
The following was proved in [5]. For completeness we sketch the proof. 

Proposition 1. Consider p E R[u, u-‘1. Then, p(a, a-‘) is injective if and only if 

p 6 $,. 

Proof. Suppose that p $2‘ $b. Then, there exists a non-unit bimonic polynomial q such 

that qlp. It is clear that 

Ker p(a, o-‘) > Ker q(o, a-‘) # 0. (26) 

Suppose, conversely, that p E $. Since p # 0 it is easy to see that the R-shift 

93 = Ker p(o, 6-l ) is finitely generated over R. Choose xi,. . . ,x,, R-generators of 93 

and let A E R”‘” be such that 

0. [Xl . . .x,,] = [xl . ..x.]A. (27) 

Let g be the characteristic polynomial of the matrix A. Since A is invertible, g E sb 

and it can easily be shown that Ker g(o, 0-l) > B. It is clear that g and p must be 

coprime polynomials and so there exist h,k E R[u, u-l] such that a = hp + kg E Ro. 
Since a@ = 0 we now have that W = 0. 0 
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Define now C to be the saturated multiplicatively closed set of Laurent polynomials 

which induce surjective scalar shift operators. It is easy to see that sb !G Z. As we will 

see equality does not hold in general. We have the following: 

Proposition 2. Let p E R[u,u-‘1. Then, p(o,a-‘) is an open surjection if and only 

if p E &. 

PrOOf. Assume that p E sb and write p = Cfzhriui with rh, rk E R*. Let y,, E R” such 

that ynlI-n,nl = 0. Clearly, for every n E k! there exists x, E R” such that xnl[_n+h,n+k] = 

0 and p(a, o-‘)x, = yn. This proves that p(o, o-l) is an open surjection. 

Suppose, conversely, that p(o,o-‘) is an open surjection and write p = ~1~2, with 

pl E & and p2 E sb. pl(cr,o-‘) is also open and bijective. Let 6 E R” be defined 

by 6(O) = 1 and d(t) = 0,Vt # 0 and let x E R” be such that p2(cr,~~)x = 6. 

Since the sequences 86, n E N, and ~“6, n E N both converge to zero, a”x and 

a-5 must also converge to zero. This implies that x has finite support which yields 

pr E (R[u,u-‘I)*. 0 

2.2. The semisimple case 

We now want to study in further detail the relation between sb and Z. In some cases 

we have equality: this happens when the ring R is semisimple (i.e. the intersection of 

all the maximal ideals is (0)). Examples of semisimple rings which we have in mind 

are the ring of integers Z and the ring of polynomials over a field k[zi, . . . ,z,]. 

We start with the following: 

Lemma 3. Assume that R is semisimple. Let p E R[u,u-‘1 such that p(a,a-‘) is 
injective and Im p(a, a-‘) > aR” for some a f Ro. Then, p E Ro . (R[u, u-l])*. 

Proof. Write p = CyCmriui. Let m be a maximal ideal in R such that a $Z m. Consider 

the residue field k:= R/m and let p = CF=,,YiU’ E k[u,u-‘1 be the quotient projection 

of p. It can easily be proven that p(a, a-‘) is a bijective scalar shift operator and 

since k is a field, we have that [12] p = bu’, where b E k* and 1 E Z. Consider 

now any pair of coefficients ri,rj, with i # j, of p. Then, rirj is in the intersection 

J of all the maximal ideals of R which do not contain a. Let J’ be the intersection 

of all the maximal ideals of R containing a. Since R is semisimple we have that 

J - J’ g J n J’ = (0). Since (a) G J’ and R is a domain, it follows that J = (0). This 

yields rirj = 0 for all pairs i # j. Hence, only one coefficient in p is non-zero. 0 

Proposition 4. Assume that R is semisimple. Then, 
(1) $6 n Z = (R[u, u-l])*. In particular, every invertible scalar shift operator has 

a continuous inverse. 
(2) sb = Z. In particular, every surjective scalar shif operator is open. 

Proof. (1) Immediately follows from Lemma 3 and Proposition 1. 
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(2) Let p E C. Factor p = p1p2 with p1 E & and p2 E &. Clearly, 

(R[u, u-*1)*. Hence, p E &,. 0 

We have another interesting consequence. 

pl E;Tbf-,I;= 

Corollary 5. Assume that R is semisimple and let p E R[u,u-‘1. Then, the following 
conditions are equivalent: 

(1) Imp(o,o -‘) 2 aR” for some a E RO, 

(2) Im p(o, 0-l) is a closed finite memory R-shift. 

(3) P E RO . sb. 

Proof. (l)+(3) Write p = plp2 with p1 E ??t, and p2 E St,. Since Imp(a,a-‘) = 

Im pl (a, o-l ), we can conclude using Lemma 3. 

(3) =S (2) is evident. 

(2) + (1) Assume that 99 has memory L. Write p = C~_rjui with r,,r, # 0. It 

follows that 

BI[O,~~ = Im ... *.. 

[ 

r, . . . r, 

r, . . . r, 1 . (28) 
Therefore, 

~l[O,Ll 2 d+‘R~O,L] (29) 

and, since 49 has memory L, 

BXrLf’R” 0 --m * (30) 

2.3. The complete case 

Quite different results can be obtained for complete rings. Let m 5 R be a maximal 

ideal. Assume that R is complete with respect to the m-adic topology r. Consider the 

ideal ti := m[u,u-‘1 in the ring R[u,u-‘1. Denote by m the &completion of 

R[u,u-‘I. We can think, in the standard way, 

Rm LS n(R/nt”R)[~, u-l]. (31) 
QO 

Proposition 6. Assume that R” is equipped with the product topology ro3 (each factor 
R is equipped with the topology z). The zoo -continuous R-homomorphisms of R” which 

commute with o are in bijective correspondence with R[u,u-11 in the following way: 

to p = { pn} E m with p,, E (R/m”R)[u, u-l], we associate 

p(a,o-‘): R” t R” (32) 
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dejned by 

(p(o,C’)v)(t):= a, (33) 

where a E R is the unique element such that {amod( = ((~~(0, a-‘)0)(t)} for 
all n E N. 

Proof. It is straightforward to verify that p(o,o-‘) defined by (33) is continuous. On 

the other hand, given a zm-continuous R-homomorphism 4 : R” + R” which commutes 

with CJ, we can consider the induced 

&,: (Rfm”R)” + (R/m”R)“. (34) 

Since the quotient topology on R/m”R is discrete and &, is a continuous R/mR- 
homomorphism which commutes with o, there exist pn E (R/m”R)[u,u-‘1 such that 

$n = Pn(%a-l ). It is clear that, if we denote p = {p,,}, we have that 4 = p(o, a-‘). 
0 

Proposition ‘7. Let m < R be a maximal ideal and assume that R is complete in the 
m-adic topology z. Then, 

(1) $, n C = (m)* n R[u,u-’ 1. This shows that every invertible scalar shiji 

operator has an inverse which is continuous in the z”-topology. 

(2) C = ((Rm)* n R[u, UC’]) . &. 

Proof. (1) > follows from Propositions 1 and 6. Conversely, let p E &, fl C. It 

follows again from Propositions 1 and 6, that p(o, o-l ) is zW-continuous and invertible. 

Since R with the topology r is inverse limit of Artinian discrete rings, it follows that 

R is strictly linearly compact [lo]. Then, also R” is strictly linearly compact and, 

consequently, p(a, o-’ ) admits a rm-continuous inverse. This yields p E (m)* n 

R[u, u-l]. 
(2) As (2) of Proposition 4. 0 

Remark. It is easy to see that p = {p,} E m is a unit if and only if pt is a 

unit of (R/m)[u,u-‘1. Let CI E m\ (0). Clearly, 1 + CLU is invertible in R[u,u-11. From 

this it follows that, if R is not a field, we always have 

R[u,u-‘I* # (RT u, u-l])* n R[u, u-l] (35) 

and, consequently, by virtue of Proposition 7, z # &. 

Example. Let R = k[[z]], where k is a field. Every p := CL& + zq with 0: E k* and 

q E R[u,u-‘1 induces an invertible scalar shift operator whose inverse is not continuous 

if q is not of the type ruk for some Y E R. 

Completeness turns out to be crucial in Proposition 7. Indeed, we now show that 

there are examples of local rings (which are of course not semisimple), for which 
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Proposition 4 still holds true. Let m be a maximal ideal of k[zi, . . .zs] and consider 

the localization R := k[zl, . . . ,z&. Denote by rii the maximal ideal of R. The &- 
completion of R is the ring of formal power series k[[zi, . . . ,zJ]. Consider now a 

bijective R-morphism 

&R”+R”. 

It extends to an R-morphism 

(36) 

(37) 

which is still bijective (this can be proven by standard techniques of inverse limits [2]). 

By virtue of Proposition 7, there exists p E k[u, U-‘][[zi, . . .zs]] such that $0 p(cr, o-l) 

= I. Necessarily, p(a, 0-l )R” = R”. Write 

(38) 

with r,, ,...,,, E k[u,u-‘I. If p @’ R[u,u-l], then the lag of the r,,,,...n,‘s will not be 

bounded and thus it would be easy to construct a sequence x E ka such that 

(Aa, 0-l )x)(O) = c (Pn,,...,n,(c, 0-l )x)(o)z;’ ’ * -4 (39) 
n I,-7 ns 

is not a rational function, in particular it is not in R”. Thus, p E R[u,u-‘1 which 

implies that the inverse of 4 is itself a scalar shift operator. 

The same result can be proven, repeating the argument word by word, for the ring 

k{zl ,..., zn} for k = [w,@. 

2.4. The PID case: some extra results 

In the case of PID’s we have some extra results which turn out to be very useful 

in the applications. 

Lemma 8. Let R be a PID. Consider p E R[u,u-‘1 and write p = apt with a E R 
and p’ E R[u,u-‘1 primitive. Then, 

Im p(a,o-l) = aR”. (40) 

Proof. Write p’ = cb,riu’. Fix now s E N and consider the s x (s + n - m) matrix 

! 
i-k ’ rnz+l *.. 

I 
yll 0 . . . 0 

0 rk ... ri_l r; .f. 0 

P= 

f. 

0 0 ... . . . # n I. (41) 

It is clear that Im (P: RS+“-m + RS) = (Im ~‘(0, a-l))l[l,sl. Elementary considerations 

of linear algebra over R show that, since r-h,. . . , r; are coprime, P is surjective and so 
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we have that (Im p’(o,~-‘))lIi,~~ = RS. Hence, Im ~‘(a, c-l ) = R” which yields the 

result. 0 

Proposition 9. Let R be a PID. Consider a polynomial p E R[u,u-‘1. Then, p(a,a-‘) 
has closed range if and only if p E R . C 

Proof. One way is trivial, while the other is direct consequence of the previous lemma. 

Corollary 10. Let R be a PID. Let m 5 R be a maximal ideal and assume that R is 
complete in the m-adic topology z. Then, 

R[u,u-‘1 =R.Z. (42) 

Proof. Let p E R[u,u-‘1. Since R” is linearly compact and p(a, a-‘) is rOO-continuous, 

it follows that p(a, a-’ ) has a closed range. The result then immediately follows from 

Proposition 9. q 

2.5. Back to d#erence equations 

We now return to difference equations showing how the results established in this 

section can be used to solve specific problems. 

Let p E R[u, u-‘1 and factor it as p = plp2 with p1 E & and p2 E Sb. It follows 

from Proposition 1 that 

Kerp(a,a-‘) = Ker pz(a,a-l). (43) 

Hence, the difference equation p(a, a-’ )x = 0 has non-trivial solutions if and only 

if p2 is not a monomial. This proves that Eqs. (9) and (10) have only the trivial 

solution, indeed 1 - zu and 1 + ZJ + zu2 are in Sb relative to the ring lJ![z][u, u-l]. On 

the other hand, 1 + (z - 1)~ - zu2 = (1 + zu)( 1 - u) and this explains why instead 

Eq. (11) has non-trivial solutions. As we mentioned in the Introduction, the equation 

p2(a, a-l )x = 0 is easy to solve and the solutions form a free R-module of dimension 

n if the lag of p2 is n + 1. This ends the discussion on the homogeneous problem. 

Consider now the non-homogeneous 

p(a, 0-l )x = y. 

It can be transformed into the system 

pi(a,a-‘)l= Y, 

pa(a, a-’ )x = 1. 

problem 

(44) 

(45) 

(46) 

As we already mentioned in the Introduction, (46) is easy to solve and there is a useful 

way to represent its solutions. The difficulty lies in (45). If R is a semisimple ring, it 
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follows from Proposition 4 that if p1 $ (R[u,u-‘I)* then, pl(a,a-‘) is not surjective. 

Hence, in this case (44) will not be solvable for all y E R”. The difficulty is that in 

general it is hard to give useful characterization of the image. If we exclude the simple 

case when p1 E Ro, Corollary 5 shows that for semisimple rings Im pl(a, a-‘) never 

has finite memory. There is thus no hope to be able to express the image in kernel 

form. Actually, if R is a semisimple PID, Proposition 9 shows that this image is not 

even closed. A typical way to try to handle Eq. (45) is the following: enlarge the ring 

R into a new ring where the scalar shift operator becomes surjective, solve the equation 

in the new ring, and then check if the solution is in R”. The easiest way to do this is to 

work in the field of fractions of R: the drawback of this approach is however that the 

scalar shift operator becomes surjective but looses injectivity. The non-homogeneous 

equation in the field of fractions thus give an affine subspace of solutions and it may 

not be very handy to go and check if one of these is indeed in R”. A technique which 

turns out to be useful in certain cases is to enlarge the ring by taking the completion 

with respect to some suitable m-adic topology. We now present a series of examples 

illustrating this technique. 

Example 1. Let R = [w[z] and let p = 1 -zu E R[u]. p E $,, hence p(a, a-‘) = 1 -zo 

is not surjective and actually, by Proposition 8 the image is dense in R”. Consider the 

(z)-completion R[[z]]. It follows from Proposition 7 and the Example following it, 

that 

-iz 
p(o,o-‘): 8” + R (47) 

is bijective and the inverse is given by 

q(0, a-‘) = ~zw. 

i=O 

(48) 

The solution of 

p(o,C1)x = y 

in i” is thus given by 

x(t) := Ez’ y (t + i). 
i=O 

(49) 

(50) 

This gives a way also to study (49) in R”: given y E R”, there exists x E R” which 

solves (49) if and only if 

yjz’y(t + i) E R[z] vt E z (51) 
i=O 
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and if this happens, then the solution is given by (50). Let us work a bit on condition 

(5 1). It is actually sufficient that 

Eziy(i) E R[z]. 
i=O 

(52) 

Writing y(i) = cjYi,j zj, we thus find the equivalent condition 

3no E N such that cyi,j = 0 ‘dn 2 no. 
I+,=” 
i>o 

(53) 

Notice in particular that, as it was easy to understand from the structure of p itself, 

for all y E R” which have right finite support, (49) admits solution in R’. Moreover, 

if y E R”, then, it follows from (53) that (49) admits solution in R” if and only if 

y has right finite support. It is easy to check that this is no longer true if y depends 

on z. 

Example 2. Let R = W[z] and let p = 1 + z - zu E R[u]. As in the above example 

p(a, CT-’ ) has dense, not closed image. Passing to the completion and repeating the 

same arguments as above (on the completion again the scalar shift operator becomes 

bijective), then we get that the non-homogeneous equation associated with p and y E 

R” has a solution if and only if 

Vt E Z 3no E N such that C e (/“) Yt+j,i = 0 Vn 2 no (54) 
i+k=n j=O 

and if this happens the unique solution is given by 

x(t):= ~~(-l)k+(;)zky(t+j). 
k=O j=O 

(55) 

The next example shows how things can also go bad. 

Example 3. Let R = [w[z] and let p = 1 + u + zu2 E R[u]. Again p(~,~-l) has 

dense not closed image. What happens in the completion 8 = R[[z]]? Since p is 

primitive as a polynomial in &u,u-‘I, it follows from Corollary 10 that p(o,o-‘) is 

surjective as an operator on B”; on the other hand, it does not admit an inverse in 

the ring R[u,u-‘][[z]], consequently it cannot be injective. This makes this example 

more difficult than previous ones: we will not get linear conditions as above for the 

solvability of the non-homogeneous problem in R”. However, let us make some other 

considerations. Note tist that p is no longer irreducible on &u,u-‘1. Indeed, let c1 E 

R[[z]] such that (1 + ~a)~ = 1 - 42. Then, 

-l-J_ 

>( 

-1+JFZ 

22 
u- 

22 > 

=(zu+y (U-F). (56) 
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Note that 

p1 =zu+ y = 1+z U+; 
( > (57) 

induces an invertible scalar shift operator. On the other hand, since ~(0) # 0, we have 

that u - a/2 is bimonic in R[u, a-‘] so that the corresponding scalar shift operator is 

surjective but not injective. The inverse of pr(a,a-‘) in lQ[[z]]’ is given by 

pl(o,o-1)-l = Ezk (CJ + ;>*, 
k=O 

so that the set of all the solutions of ~((T,G-~).x = y in R[[z]]” is given by 

q(t)= (~si+~(~)j(~zk(~+4)“~)(t-1-i) 
j=O 

(58) 

(59) 

as 1 varies in R[[z]]. This formula is not very appealing and it may be practically 

impossible to establish if, given y E R[z]“, there exists 1 E R[[z]] such that (59) is a 

polynomial for all t E Z. However, it may be possible to establish if there is at least 

a solution which is analytic in a neighborhood of 0. Notice first that a E R(z) so that 

the decomposition p = plp2 still holds in the smaller ring lR{z}[u,u-‘1. It is therefore 

clear that such a solution exists if and only if 

Ezk (CT + ;>* y E R(z)” 
k=O 

(60) 

and if this is true then, all the possible analytic solutions are given by (59) as 1 varies 

in R(z). While it remains impossible to find necessary and sufhcient conditions for 

(60) to hold true, it is nevertheless possible to find interesting sufficient conditions. Fix 

first 6 > 0 such that a is convergent and bounded by 1 in the ball B(O,6). Consider 

then a y E R”. We have 

(61) /((o+;)*+t)I= $0 ($(t+k-A 

$ (;) (f)it;y+kl~G)l =t<sy~+kI~(i)l ($ (62) 
-- -- 

From this it follows that (60) holds if y E I&!” has exponential growth for positive times. 

It also follows that (60) holds if y E R[z]” has bounded degree and the coefficients 

have exponential growth for positive times. 

The situation of the previous example regarding the local analytic case contains 

general facts which are worth discussing a bit longer. Let k be the real or complex 

field and let p E k{zl,.. . z,,}[u,u-‘I. Assume that p E $. A priori p might have 
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bimonic factors in k[[zi, . . . z,J][u,u-‘1. However, it follows from an easy application 

of an important result by Artin [l] that this is not the case. p is in $, also relative to 

the ring k[[zi,... zJ][u, u-l]. Therefore, p(a, 0-l) remains injective on k[[zi,. . .z,,]]‘. 

This proves the following interesting result. 

Proposition 11. Let R = k{zl,. . .zs} and let I? = k[[zl,. . .zs]]. Consider p E k{zl,. . . 

zs}[u, uel]. Then, 

Ker p(o, rl)lRz = Ker p(a, ~J-'),~z, (63) 

where the closure is with respect to the product topology P’. 

Going back to the non-homogeneous problem, we thus have that injectivity is in this 

case never lost when we pass to the completion. In the general case it is however not 

easy to solve the non-homogeneous problem even on k[[zl, . . . zs]]“. The case s = 1 

however, because of Proposition 7 and Corollary 10, is completely solved and this 

gives a good way also to study the problem on k(z)” as it was done in Example 3. 

In particular it can be easily shown that we can always find exponential growth type 

sufficient conditions. 

We now come to other examples. 

Example 4. Let R = Z and let p = 1-2~ E Z[u]. This example resembles Example 1 

and indeed it will be handled in a similar way though certain considerable differences 

will appear in the end. Again p(o, 0-l ) = 1 - 20 has dense, not closed image in R”. 
Denote by I? the ring of 2-adic numbers namely, the completion of Z with respect to 

the maximal ideal (2): elements of & can be represented as power series ‘JJzi2’ where 

ai E (0, 1). p(o, 0-l) is bijective on fi” and the inverse is given by 

i=O 

Hence, given y E Z”, there exists x E Z” such that 

P(w+~ = Y 

if and only if 

(64) 

(65) 

+CU 

x(t):= CZ’y(t + i) E Z Vt E Z. (66) 
i=O 

Apart from Example 1 we cannot find any simple condition similar to (53): the diffi- 

culty lies in the fact that integers inside the 2-adic complement do not simply corre- 

spond to ‘polynomials in 2’ (for instance we have that -1 = x2’). 

Example 5. Let R = [w[zl,zz] and consider p = z1 - ~224. p(a, 6-l) is injective. We 

cannot say very much about the image except that it does not have finite memory by 
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Corollary 5. In the completion R[[zt ,zz]], p(o, a-‘) is still injective but, however, not 

surjective: otherwise p would be invertible in R[u, U-‘][[zt,zz]] while it is not. How- 

ever, it becomes bijective if we invert zr , namely if we work in the ring W[[zt ,zz]][z;‘]. 

The inverse is given by 

q(o,d):= z;l~(-l)kz;kz~ok. 
k=O 

(67) 

By repeating the arguments of Example 1, we can easily prove that given a y E R’, 
there exists x E R” such that p(a, o-l )x = y if and only if 

vt E z c y~+j,l<z,)zy-~ E IlqZl] vn E N, 

l+j=n 

or equivalently 

(68) 

Qt E iz 3no E ZV C yt+j,l(zl )zrj = 0 Vn 2 no, (69) 
l+j=n 

where y(t) = &+,h)~~ with yt,r E Wd. 

3. Matrix shift operators 

3. I. Polynomial matrices 

Let A be a factorial domain. The rank of M E Alxe is defmed as the usual rank 

with respect to the field of fractions of A. M E Atxq is said to be full column (resp. 

row) rank if its rank is equal to q (resp. I). 

Let S CA be a multiplicatively closed subset. M E Alxq is said to be right S-factor 
prime if it has full column rank and if A4 = M’F with M’ E Atxq and F E AQxq yields 

det F E S. A matrix M is said to be left S-factor prime, if MT is right S-factor prime. 

The following was essentially proved in [7, 91. In the present form it can be found 

in [5]. 

Theorem 12. Let R be a UFD. Let S C_ R[u, u-l] be a saturated multiplicatively closed 
l set. Let M E R[u,u- ] ‘*q be full column rank. Consider the following facts: 

(1) M is right S-factor prime. 
(2) Every common factor of q x q minors of M is in S. 

(3) There exists N E R[u,u-‘]qX1 and a E S such that 

NM = al. (70) 

Then, (1) + (2) + (3) Zf S-‘R[u,u-‘1 is a PZD, then (1) e(2)- (3). Zf, moreover, 
R is a PZD, then all the previous conditions are equivalent. 
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The following is in [9]. 

Lemma 13. Let R be a PID. Let A E R[u, u-‘]tx’ with detA = f1 f 2 where f 1, f 2 E 
R[u, u-‘1 \ (0). Th en, there exist Fi E R[u,u-‘]‘~’ with det Fi = f i for i = 1,2 such 

that 

A = F1F2. (71) 

We have another useful factorization result. 

Lemma 14. Let R be a PID. Let M E R[u,u-‘]‘~‘? be a matrix of rank r. Then, 
there exist matrices Ml E R[u,u-~]~~’ and M2 E R[u,u-‘lrxq such that M = MlM2. 
Moreover, tf S G R[u, u-‘1 is any saturated multiplicatively closed subset, then Ml 
can be chosen to be right S-factor prime and M2 left S-factor prime. 

Proof. With standard techniques on the ring F[u, u-l], where F is the field of fractions 
of R, we obtain matrices Ni E R[u,u-~]‘~’ and N2 E R[u,u-‘]~~~, and a E Ro such 
that aM = NlN2. Factor now N2 = N,‘M2 with Ni E R[u,u-‘1”’ and detNi E Ro, and 

1 with M2 E R[u,u- ] rxq left &-factor prime. It is now easy to show that there exists 
Ml E R[u 7 u-‘]txr such that M = MlM2 (see [9]). The last part is now a consequence 
of Lemma 13. 0 

3.2. Matrix shift operators 

’ Theorem 15. Let R be a UFD. Let M E R[u,u- ] lxq. Consider the following facts: 

(1) M(a, a-‘) is injective. 
(2) There exist X E R[u,u-‘]qX’ and a E St, such that 

XM = al. 

(3) M is right &-factor prime. 

(72) 

Then, (1) * (2) + (3). Moreover, if R is a PID we also have (2) + (3). 

Proof. (2)+-(3) is trivial and (2)+-(l) is a consequence of Proposition 1. 
(1) +- (2) M is full coltmm rank because otherwise it would be possible to find a non- 

zero sequence with finite support in the kernel of M(o, o-l). By standard diagonaliza- 
tion techniques, there exist U E R[u, u-l]txt, V, A E R[u, u-l]qxq with det U,det V E Ro 
and A diagonal, and r E Ro such that 

rM = U 
A 

[ 1 0 v. 

Clearly, A(lr, a-’ ) is injective and this yields det A E & by Proposition 1. Write 

(73) 

Ul 
AWU) = u2 

[ 1 
(74) 
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with Ui in R[u,u-‘]‘~~[. We thus obtain from (73) 

rUIM = (det U)nK (75) 

Hence, if Z = Adj(_4v), we have 

rZU&f = (det Udet Adet V)Z. (76) 

Hence (2) is proven with X = rZU1 and a = det U det Adet V. 

If R is a PID, (2)-+(3) follows from Theorem 12. 0 

For the rest of this subsection we will assume that R is a PID. Before analyzing 

the class of surjective matrix shift operators, we need some preliminary definitions and 

results. Consider Rb := S;lR[u,u-l]. It follows from the arguments in [8] (Chapter 

IV), that if R is a PID, also Rb is a PID. For the sake of completeness we here give 

a completely elementary proof of this fact. Let 9 be any ideal in R[u,u-‘1 such that 

Y n R # (0). For all n E N, define the following ideals of R 

J,,:={aER:lpER[u] degp -C nwithau”+pEY}. (77) 

Let a,, E R be such that J, = (a,). Clearly, a,la,_l. Let qn E 9 be such that 

qn = aa” + CL 

where 4, E R[u] and deg&, < n. 

(78) 

Lemma 16. Let 9 be any ideal in R[u, u-l] such that Y n R # (0). Let a, E R and 
q,, E R[u] be dejined as above. Then a,,lq,, for all n. 

Proof. The result is obvious for n = 0. Assume it is true for n I k - 1 and prove it 

for n = k. By contradiction assume that ak lqk and let m < k such that there exist 

f,g E R[u] such that 

qk = akf + g (79) 

and such that deg g = m and ak does not divide the leading coeficient c of g. Consider 

now qm = am(um + q,,,), where 4, E R[u] with degq,,, < m. We know that a,,, = bak 

for some b E R \ (0). Let d,e E R[u] with dege < m such that 

e:= f - d(u” + 4,). (80) 

Consider 

bqk - 4, = bak f + bg - da,(um + 4,) 

= a,(f - d(um + &,)) + bg 

=a,e+bgEY. (81) 
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Notice that the leading coefficient of bqk - dq, equals the leading coefficient bc of bg 
and that deg g = m. Hence 

bc = aa, = abak (82) 

and so c = ask which is a contradiction. IJ 

Proposition 17. If R is a PID, then the ring Rb:= SF’R[u,u-‘1 is also a PID. 

Proof. Let Z be an ideal of Rb and let ei, . . . , ek E R[u,u-‘1 be a set of generators for I 

(as an ideal of Rb). Let e E R[u,u-‘1 be the greatest common divisor (in R[u,u-‘1) of 

ei ,... ,ek. Set fi = e-‘ei. Denote by 9 the ideal in R[u,u-‘1 generated by fi,. ..,fk. 

It is now sufficient to prove that x n Sb # 8. Notice that, by construction, 9 n R # { 0). 
Define the sequences a, and qn as in Lemma 16 and let a E R be the greatest common 

divisor of the a,, in R. It is clear that we can express any p E 9 as follows: 

p=u -l&&, (83) 
n=O 

where a, E R and 1 is a suitable non-negative integer. Since a divides each q,,, then 

it divides also p. We can argue that a divides f 1,. . . , f k and since they are coprime, 

then a must be an invertible element in R. Hence a,, is invertible for some n and, 

consequently, the corresponding qn is a manic polynomial. In a similar way we can 

show that there exists a polynomial in 9 n R[u-‘1 whose lowest degree term has 

invertible coefficient. This easily implies the existence of a bimonic polynomial in 9. 

This completes the proof. 0 

We are now in position to give the characterization of the class of surjective matrix 

shift operators. 

Theorem 18. Let R be a PID and let M E R[u,u-‘]‘~~. Then the following are 
equivalent: 

(1) M(a, a-‘) is surjective. 
(2) There exists X E R[u,u-‘]qX’ such that 

MX = al, 

where a E C. 
(3) M is left C-factor prime. 

(84) 

Proof. Since sb & z, it follows from Proposition 17 that Z-‘R[u, u-‘1 is a PID. There- 

fore, (3) + (2) follows from Theorem 12 applied to MT. 
(2) * (1) is trivial. 

(1) + (3) It is immediate to check that M must be full row rank. Suppose M = AM’ 
’ with A E R[u,u-1]‘X’ and M’ E R[u,u- ] “q. Passing through the Smith form of A 

in the PID C-‘R[u,u-‘I, we find U, V E R[~,u-‘]‘~’ with det U,det V E C such that 
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D := UAV is a diagonal matrix. Clearly, D(a,a-‘) is a surjective shift operator and, 

therefore, det D E C. This yields det A E C and this completes the proof. 0 

Theorem 19. Let R be a PZD and let M E R[u,u- ] ’ Ixq Then the following facts are . 

equivalent: 

(I) M(a,o-‘) is an open surjection. 
(2) There exists X E R[u,u-‘]qX1 such that 

MY = al, 

where a E sb. 

(85) 

(3) M is left &-factor prime. 

Proof. Since ,S;‘R[U,U-~] is a PID, (3)+(2) follows from Theorem 12 applied to 

MT. 
(2) + (1) Let w, E (R’)” converging to zero. Then, there exists, v, E (R’)” con- 

verging to zero such that a(a, o-‘)vn = w,. Put un := X(~,K~)V,. Then u, --+ 0 and 

M(o,o-l)u, = w,,. This yields (1). 

( 1) + (3) Write M = MlM2 with Ml right &factor prime and M2 left $-factor 

prime. We have that Ml(o, o-l ) is open. Using the same arguments of the proof of 

Proposition 2, we obtain that Ml must be square and invertible. 0 

Finally we want to study closed range shift operators. We first need a lemma. 

Lemma 20. Let R be a PZD and let M E R[u,u-l]‘xq be such that M(o,a-‘) has 
closed range. Let K C(Rq)” be a closed R-submodule such that 

(aRq)” &K &(Rq)” (86) 

for some a E Ro. Then M(o,o-l)(K) is closed. 

Proof. M(o,a-‘) induces a surjection 

4: ((R/aR)q)z --+ ImM(a, cr-‘)/a(ImM(o, a-‘)). (87) 

Clearly, K/(aRq)” is closed inside ((R/aR)q)“, and since this last one is linearly com- 

pact [15], we have that M(a,a-‘)(K)/a(ImM(o, a-l)) = 4(K/(aRq)“) is closed inside 

ImM(o,o-‘)/a(ImM(cr, o-t)). This implies that M(a, o-‘)(K) is closed in (R’)“. 0 

We are now ready to characterize closed range shift operators. First, we introduce 

another notion of primeness which is a generalization of previous ones. Let SC Ro 
be a multiplicatively closed set and let M E R[u,~-‘]‘~” be a matrix of rank r. M 
is said to be S-factor prime if given any factorization of type M = MlAM.2, where 

Ml E R[u,u-~][~‘, A E R[u,u-l]rxr, and Mz E R[u,u-‘lrxq, we have that det A E S. 

It is easy to see that if r = 1 (resp. r = q), then M is S-factor prime if and only if it 

is left (resp. right) S-factor prime. 
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Theorem 21. Let R be a PID and let M be a rank r > 0 matrix in R[u,u-‘]‘~~. 
Then the following are equivalent: 

(1) M(o, a-‘) has a closed range. 
(2) There exist matrices X E R[u,~-‘]‘~~, Y E R[u,u-‘]qx’ such that 

XW = al, (88) 

where a E R&. 

(3) M is ROE:-factor prime, 

Proof. (1) + (3) Passing through the Smith form of M in the PID F[u,u-‘I, where 

F is the field of fractions of R, we obtain that there exist matrices U E R[u,u-‘]*~~, 
V E R[u,u-‘]qxq with a = det U, b = det V E Ro and a diagonal non-singular D E 
R[u, u-‘lrxr such that 

(89) 

Notice that Im V(a, o-l ) is closed and 

b(H)” & Im V(o, a-‘) C(Rq)“. (90) 

Hence by Lemma 20, Im(MV)(o,cr-’ ) is also closed. Since U(o, IT-~) is invertible 

on its image, it follows that Im D(a, 8-l ) is closed. By Proposition 9, this implies that 

detD E ROE’. In particular, we have that UMV is R&S factor prime and this immediately 

yields that A4 is also RoC factor prime. 

(3) + (2) Write M = MtM2 as in Lemma 14. It is clear that Mt is right R&factor 

prime and M2 is left R&factor prime. The result then follows from Theorem 12. 

(2) + (1) Consider the factorization A4 = MtMz as in Lemma 14. Since we have 

AMtM2Y = al, it follows that det(mt ),det(k&Y) E R&C:. It easily follows from 

Theorem 12 that by a suitable choice of the factorization we can assume that Ml is 

right Ro-factor prime and I& is left C-factor prime. By Theorem 18, ImM(o, a-*) = 

ImMt (a, 0-l ). Since, by Theorem 12, A41 (a, 0-l ) admits a continuous inverse on its 

image, the result now follows. 0 

3.3. Systems of difSerence equations 

Consider first the homogeneous equation 

M(a,a-‘)v = 0, (91) 

where A4 E RIXq[u,u-‘]. We would like to note fkst of all that Theorem 15 fur- 

nishes a way to establish for any Noetherian factorial domain if, given a matrix M, 

Ker M(o, a-’ ) is empty or not: indeed condition (1) of Theorem 15 is equivalent, by 

Theorem 12, to the more concrete condition that the common factors of the principal 
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minors of the matrix M must be in &. If R is a PID it is possible to say much more 

about Ker M(o, c-t). 

Assume that M has rank r. Using Lemma 14 we can factor M = MiM2 where 

Mi E R’xr[u,~-l] is right $-factor prime and M2 E Rrxq[u,u-‘] is left &-factor 

prime. By virtue of Theorem 15, we have that 

KerM(o,a-‘) = KerMz(c,a-‘). (92) 

In studying (91) we can therefore assume that M is left $-factor prime. Under this 

condition it can be determined a characterization of the class of kernels that are con- 

trollable and so that admit an image representation. 

Theorem 22. Let R be a PID and let M E R’XQ[u,u-l] be left S&actor prime. Then, 
the following are equivalent: 

(1) %?:= KerM(o, 6-l) is controllable. 
(2) There exists X E RqX [[u, u-‘1 such that 

Mx = I. (93) 

(3) The ideal generated by the 1 x 1 minors of M coincides with R[u,u-‘I. 

Proof. (2) + (1) It is easy to verify that 

KerM(a,a-‘) = Im(1 -xM)(o,o-‘) 

and this implies that W is controllable. 

(3)+(2) Let mi,mz,..., m, be the 1 x 1 minors of M. There exist hl, h2,. . . , h, E 
R[u, u-l] such that 

2 himj = 1. (94) 
i=l 

Suppose that Si is the selection matrix (i.e. a matrix in Rqx’ with only zeros and ones), 

such that mi = det(M&). Then 

1 = 2 himi = 2 hi(detMSi)I = M 2 hiSi Adj(MSi) (95) 
i=l i=l i=l 

(1) + (3) First we want to show that M is let? (R[u,u-‘I)*-factor prime. Factor 

M = FN with F E R’x’[u,u-l] with detF E & and N E R’x’J[~,~-l] left (R[u,u-‘I)*- 
factor prime. Since &Y is controllable, then there exists a polynomial matrix P such that 

&% = Im P(a, c-l ). Notice that MP = 0 and so also NP = 0 holds true. From these 

facts it is easy to verify that 

KerN(a,o-‘) = KerM(a,a-‘). (96) 



78 F. Fagnani, S. ZampierilJournal of Pure and Applied Algebra 122 (1997) 55-86 

Let X E RqX’[u,u-‘1 be such that NX = al for some a E Ro. Then, if w E 

Ker F(a, g-l ) we have that 

0 = aF(o,a-‘)w = (FM)(o,a-‘)w = (Mx)(o,o-‘)w. 

By (96), we also have 

aw = (NX)(o, d)w = 0 

that implies that w = 0. This means that F(o,o-‘) is injective. By Theorem 15, F is 

invertible and so M is left (R[u,u-‘I)*-factor prime. 

Let m be a maximal ideal in R. Consider the residue field k:= R/m. Let A? be the 

quotient projection of M over klxq [u,u-‘1 and let a:= Keri@(o,o-‘) C(kq)Z. It can 

easily be proved that since M(a, a-‘) is surjective, then A?(G, a-‘) is surjective. We 

want to show that a is controllable. This follows easily from the fact that any W E a 

admits a representative in 3?. Actually, if W E Kerti(o, a-l ) and w is a representative 

of W, then M(a, a-‘)~ = ku and, since M(o, a-‘) is surjective, there exists u such 

that u = M(o,o-‘)u. This implies that M(o,o-‘)(w - ku) = 0 and so w - ku is a 

representative of W that is in &3. 

Let J be the ideal generated by the 1 x I minors of M. Since M is left (R[u,u-‘I)*- 

factor prime, then there exists a E Ro such that a E J. Let k be a prime in R such that 

a = a’k. From the previous considerations we can argue that the projection of J on 

R/(k)[u,u-‘1, that coincides with the ideal generated by the 1 x 1 minors of ti, cover 

all R/(k)[u, u-l 1, and so there exists p E R[u,u-‘1 such that 1 + kp E J. This implies 

that 

a’ = a’( 1 + kp) - up E J. 

A simple induction argument then shows that 1 E J. 0 

Remark. In applying Theorem 22 it is necessary to be able to determine if an ideal 

generated by a finite family of polynomials contains 1. Note first that, given an ideal 

Z in R[u,u-‘1 generated by gi , . . . , gn, then Z n R # (0) if and only if gi, . . . , gn are 

coprime as polynomials in F[u,u-‘1, where F is the field of fractions of R. Therefore 

the condition Z n R # (0) can be verified by using the Euclidean algorithm in the 

Euclidean domain F[u,u-‘1. 

Suppose now that we have found that a E Ro is in Z and let 

Again by Euclidean algorithm in R/m[u,u-‘1 it is possible to verify if the ideal in 

R/m[u, u- ’ ] generated by gt + m[u, u-l], . . . , g,, + m[u, u-‘1 coincides with R/m[u, u-l]. 

This is the case if and only if Z = R[u,u-‘I. It is easy to see that since R is a principal 
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ideal domain, the set A4 is finite. Therefore the check of the equality I = R[u,u-‘1 

requires a finite number of applications of the Euclidean algorithm. 

Note that the previous theorem provides a technique for obtaining an image repre- 

sentation of 8 (W = Im (I - xM)(o, 0-l )). This image representation however pro- 

vides a non-injective parametrization. This drawback can be overcome in the following 

way. The fact that there exists X such that MY = I implies that there exists M’ E 

R(q-‘)xq[u,u-l] be such that 

(97) 

is invertible. Let X E R4x’[~,~-1], X’ E R qx(q-‘)[u,u-‘] be such that [X X’] is its 

inverse. It is easy to verify that 

%Y = ImX’(a,a-‘) (98) 

and that X’(o, a-‘) is injective. 

As we have seen, when W = KerM(o, a-‘) is controllable, 

of the solutions of the homogeneous difference equation (91) 

then the parametrization 

is particularly simple. 

In general, given W = KerM(o, c-l), there exists the largest controllable closed 

R-shift inside a denoted by ?8=, that can be seen to have finite memory [14]. In our 

case there is a concrete way to characterize aC. Factor M = FN with F E R’x’[u,u-l] 

with det F E sb and N E R’Xq[u,u-l] left (R[u,u-‘I)*-factor prime. There exists 

N’ E R(q-[)xq[u, u-l] such that 

det t, 
[ 1 E R,,(R[u, &I)*. 

Let x E RqX’[u,u-‘], X’ E Rqx(q-‘)[u,u-l] such hat 

bYx’1 [;I = [;I [XX'1 =rIq, 

(99) 

where r E Ro. Finally, factor X’ = PF’ with P E Rqx@-‘)[u,u-‘] primitive (i.e. 

right &,-factor prime) and F’ E R(q-‘)x(q-‘)[u,u-l] with detF’ E Ro. We have the 

following: 

Proposition 23. 

$& = Im P(0, a-‘). (101) 

Proof. ‘2’: Since 0 = MY’ = MPF’, it follows that MP = 0. This proves the inclusion. 

‘C ‘: By definition of BC it is enough to show that if P’ E Rqxs[u, u-l] is such that 

Im P’(o, 0-l ) C g, then Im P’(o, 0-l ) C Im P(o, 0-l ). Now, if MP’ = 0, it follows that 

NP’ = 0 and so from (100) we have 

rP’ = XNP’ + X’N’P’ = X’N’P’ = P(F’N’P’). (102) 
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Since P is primitive, it follows that (see [9]) there exists X E R(q--[)xs[qU-l] such 

that P’ = PX. This completes the proof. 0 

When Ker M(a, a-‘) is not controllable, it is not possible to parametrize its elements 

through the image of a shift operator since the controllable part does not cover all of 

KerM(a, a-‘). We have to add to the controllable part a finitely generated free R-shift 

as shown in the next proposition. 

Since S;‘R[U,U-~] is a PID, then there exists M’ E R(q-‘)xq[u,u-l] such that 

p:= det M E &,. 
[ 1 M’ 

Let x E RqX’[u,uml], X’ E Rqx(q-[)[u,u-‘] be such that 

*dj c, [ 1 = [XX’]. (104) 

We have the following: 

Proposition 24. Let B:= KerM(a, a-‘). Then we have the following: 
(1) The controllable part of B is given by 

99= = ImX’(o, fY1 ). 

(2) The following decomposition 

B=&B9& 

holds, where 

& =X(o,o-‘)(Kerp(o,o-‘)I) 

(105) 

(106) 

(107) 

if finitely generated free as an R-module. 
(3) We have that 

& n 9& = (xM)(o, o-‘)(Ker p(o, a-‘)I). (108) 

Proof. Suppose that w = X(a,a-‘)v with p(o,o-‘)v = 0. Then M(a,a-‘)w = 

AdX(cr,a-‘)v = 0 and so 

On the other hand it is clear that 

and thus 

LB > B + ImX’(o, 0-l ). 
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Suppose conversely that M(o, e-l )w = 0. Since the shiR operator associated to the 

polynomial matrix [X X’] is surjective, there exists v such that 

w = [X x’](a,a-‘)V =X(a,C’)zQ +X’(o,rJ-‘)v~. 

Moreover 

p(a,d)v1 =m(a,a-‘)Vl =M[X x’](o,a-‘)u =M(fJ,d)w = 0 

and so we have that 

B C @ + ImX’(o, c-l) 

and thus 

.!8 = 58 + ImX’(o, 0-l ). (109) 

We want to show now that gC = ImX’(cr,a-‘). It is clear that GJC > ImX’(o,a-‘). 

Since BC is closed and controllable, then by [14] there exists a polynomial matrix 

P such that gC = Im P(a, a-‘). Let w E gC. Then, since p(o, 0-l) is surjective, 

w E Im pP(a, 0-l ) and so there exists v E Im P(a, 0-l ) such that w = p(a, 0-l )v. 

Using (109) we have that v = vi + ~2, where vi E & and v2 E ImX’(a, g-l). Then 

w = p(a, C’)v = p(a, a-‘)a1 + p(a, o-i)212 = p(c7, o-‘)v2 E ImX’(a, 0-l). 

Finally, suppose that w E &J C-I gC. Then w = X(a, 0-l )vl = X’(C, CJ-‘)V~ with 

p(a, a-‘)vi = 0. There exists u such that 

This implies that u E Ker p(o, c-l) and that w = X(a, ~-~)vi = XM(a, a-‘@. Suppose 

conversely that w = xM(o,cr-‘)u, with u E Ker p(o,o-‘). Define v := M(a,o-‘)u. 

Then it is clear that p(a,o-‘)u = 0 and so w E X(a,a-‘)(Ker p(o,a-‘)). Moreover, 

since 

0 = p(a,d)u =m(a,o-$4 +X’M’(a,o-$4, 

we have that w = -X’M’(a,a-‘)u and so w E ImX’(a,a-‘). 0 

The previous proposition provides a way for parametrizing the trajectories in 

KerM(a,a-‘) by an image representation and by an R-shift that can be generated 

through the techniques presented in the scalar case. The only drawback of this para- 

metrization is that it is not injective since &n BC is not zero in general. Notice more- 

over that the previous proposition provides also an alternative way to compute the 

controllable part of Ker M(o, 0-l ) based on a completely different technique than the 

method shown in Proposition 23. It is worth noting that the method presented in Propo- 

sition 23 is usually more efficient and direct since it is based on algorithms working on 
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matrices with enties in the PID RTIR[u,upl], that are much easier than the analogos 

algorithms working on matrices with entries in the PID S;‘R[u,upl]. 

We now turn to the non-homogeneous case 

M(a, o-‘)V = w. (110) 

If M is not R&,-factor prime, there are all the difficulties which already appeared 

in the scalar case. Indeed, in the semisimple case, it follows from Theorem 21 that 

B := ImM(rr, a-‘) is not closed and hence not easy to characterize. We concentrate 

here on the case when A4 is R&,-factor prime. In this case we know that LB is a closed 

controllable R-shift. It follows from the results in [5] that then B has necessarily finite 

memory and it will therefore admit, for the considerations done in the Introduction, a 

kernel representation. We now show how to find it explicitly. 

We can factor M = A4iM2 with Mi E R’xr[~,zi-l] right Rs-factor prime and M2 E 

RrX4[u, u-‘1 left &-factor prime. We can therefore transform (110) into the system 

Mi(O, 5-9x = w, (111) 

M2(5,5-9l = x. (112) 

Note that, by Theorem 18, (112) is always solvable in v for every x. Consider now Eq. 

(111). Note first that, by Theorem 15, Mi(rr,o-‘) is injective. Hence, if a solution x 

exists, it is unique. It follows from Theorem 12 that there exists Y E Rrx’[~,~-l] and 

r E Ro such that YM, = rl. Hence, if x solves (11 l), we must have KV = Y(o, a-‘)~. 

Therefore, we first find a necessary condition for w E 99 := ImMi(a,a-‘). We must 

have 

Y ( Y(o,K’)w. (113) 

Assume now that (113) is satisfied and consider n = r-l Y(a, o-‘)w. Substituting in 

(1 1 1 ), we obtain the second condition 

(Ml Y - &)(cr, o-i )w = 0. (114) 

It is clear that the two conditions together (113) and (114) are necessary and sufficient 

for w E B. If we consider the shift operator 

$: (R’)” + (R’/rR’)” @ (R’)“, (115) 

l/9(w):= (7c(Y(a,d )w), WI Y - rO(a, 0-l )w) , (116) 

where rr : (R’)” + (R’/rR’)” is the canonical projection. We have that 

Ker $ = 98 = ImM(o, 0-l). (117) 

Moreover, if w E ImMi(o, a-’ ), the unique solution of (111) is given by x = 

r-’ Y(a 0-l )w. Note that we have also proved that Mi(o, 0-l ) is open on its im- 

age so Bat also M(a,o-‘) is open on its image: equivalently we can say that (110) 

has the finite property as discussed in the Introduction. 
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What remains to be done is to show how to explicitly solve (112). We have already 

discussed how to solve the homogeneous equation associated to Mz. Hence, to solve 

(112), we only need to find an explicit solution. It follows from Theorem 18 that there 

exists X E Rqxr[u,u-‘1 and r E Sb such that M& = rZ. Find first v” E (R’)” such that 

v(a, 6-l )Zv” = X. We have that 

X = ?@,a-‘)Zfi =M*(o,O-l)x(o,a-‘)G (118) 

which shows that u = X(a, (r-l )v” is an explicit solution of (112). This completes our 

analysis. 

We now present an example to show how to concretely apply our results. 

Example 6. Let R = l&z]. Let 

M:= 
( 

-zu + 222 -z(u - 2) 222 

-u-1+32 -2(u -2) 32 > 

and consider first the homogeneous difference 

M(o, a-‘)0 = 0. 

(119) 

equation 

(120) 

It is easy to check that the greatest common divisor of the principal minors is ~(~4-2) so 

that M is left RsSb-factor prime. Using standard techniques we can factor M = MtM2, 

where 

z z 
M:= 1 2 , ( > it&:= ( -u+z+l 0 z 

z-l 2-u > z * (121) 

n/l, is let? $-factor prime. In studying the homogeneous problem we can forget MI. 

Since u - 2 is a common divisor of the principal minors of M2, then by Theorem 22 

we can argue that B:= KerM(o, 0-l ) = KerMz(o, 0-l) is not controllable. 

Factor again M2 as M2 = FN, where 

F:= (; :>, N:= (All yu ;). 

Note that N is left R[u,u-‘I*-factor prime. Complete it to 

N:= ({l + i). 

We have that 

(123) 

Adj(N)= (E 8 /_ l). (124) 

(122) 
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Hence the controllable part of g is 

L2dc = Im 

Complete now 442 to 

We have that 

2-u-z Z z(u - 2) 

Adj(fi2) = 1 -z -u+z+ 1 z(u - 2) 

z-l U-Z- 1 (U-2)(U-z- 1) 

(125) 

(126) 

(127) 

andq:=det@2=(u-2)(u-l)E&,.Let 

2-u-z Z z(u - 2) 

X:= 

i 

l-z -u+z+l , p:= z(u - 2) 

. 
(128) 

z-l u-z-l 1 ( (U-2)(24-Z- 1) 

These matrices are such that Adj(G2) = [X X’]. Then the controllable part of B is 

given also by ImX’(a, a-‘) ( as it can be easily verified) and moreover 

g=B+$, (129) 

where & r X(o,o-‘)(Kerq(o,a-‘)Z). Notice that w E Kerq(o,a-‘)I if and only if 

wT(t) = CA’B, ‘dt E Z, (130) 

where 

A= C=(l 0) 

and B may be any matrix in R 2x2 Noting that X = Xa + Xiu, where . 

X0:= (;E; +J. X1:= (i pl). 

we have that u E X(o,a-‘)(Kerq(o,a-‘>I) if and only if 

UT(t) = CA’(BX, + ABXT), Vt E Z, 

where B is free to vary in R2 x2. 

We pass now to consider the non-homogeneous equation 

M(a, a-$ = w. 

(131) 

(132) 

(133) 
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Consider the factorization M = MiM2 as above. In this case we can immediately see 

that 

ImM(o,o-‘) = ImMi(o,a-‘):= 
{( > 

TZ1 IWi,W2ERZ . 
1 

Let now fix 

WC m1 ( > . 
w2 

The unique solution of Mi(a, o-l )X = w is given by 

To find a particular solution of (133), solve first the equation 

(1 -u)(2-u)lv”= (2wl-z). 

A particular solution is given by 

2Wi(Q - w2(t) 0 

-w*(t)+ w2(t) 0) (i !2yk (3 

(134) 

(135) 

(136) 

(137) 

(138) 

and so a particular solution of M~(cJ,o-‘)u = n is then given by X(0, o-‘)v” which 

provides a particular solution also of (133). 

3.4. An extension to the ring of local analytic functions 

Even if we consider only one variable, the ring of locally convergent power series 

R=k{z} (k=R,C) is not a PID. However, some parts of the theory developed in 

this section can still be applied to this case. Two basic facts are the key ingredients to 

do this: first, its completion fi = k[[z]] is indeed a PID; second we have the important 

result by Artin [l] already recalled in Section 1 which essentially permits us to solve 

systems of polynomial equations in R once we know that a solution exists in 2. Using 

these two ingredients in a caremlly way, we can prove in a lengthy but straightforward 

way that Theorem 12 and Proposition 14 still hold true if R = k(z) and S = &,&,RO. 
With this we can then show that all the results for systems of difference equations 

established in the last two subsections can be extended to the case R = k(z). Notice 

also that Proposition 11 admits a straightforward extension to the matrix case. Finally, 

notice that for the ring 3 = k[[z]] also non-homogeneous problems with matrices M 

which are not necessarily &&-factor prime can be treated via the results obtained in 

Section 2 for the complete PID’s. This permits us, in principle, to study general matrix 

non-homogeneous problems for R = k(z) using the same techniques than in the scalar 

case as in Example 3 of Section 2. We omit all details. 
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